Calling Julia from Python - an experiment on data loading

Overview

Calling Julia from Python - an experiment on data loading

DOI

See the slides.

TLDR

After reading Patrick's blog post, we decided to try to replace C++ with Julia to check:

  • How easy/hard it is
  • How much improvement can be gained with a basic version
  • How much improvement can be gained with an optimized version

A basic version is already an improvement over the pure Python version, and an optimized version was faster than the C++ version.

Reproduction

  • Follow Patrick's blog post to install the C++ part.
  • Install Julia (We've used Julia 1.6.3)
    • I recommend using Jill
    • We'll refer to this Julia as path/to/julia.
  • Install Python
    • Ideally, one dynamically linked to libpython.
    • To test it, use ldd path/to/python and look for libpython3.9. It should exist for the shared version.
    • If you don't have, look into workarounds here
    • Tip: Archlinux's system Python is dynamically linked.
    • We've used Python 3.9.7 from Archlinux.
  • Open Julia and enter the following commands:
    • ENV["PYTHON"] = "path/to/python"
    • using Pkg
    • Pkg.add("PyCall")
    • This will make sure that the packages we are installing use the correct Python version
  • Install juliapy with path/to/python -m pip install julia
  • Run path/to/python and enter
    • import julia
    • julia.install("julia=path/to/julia")
  • Download dataset and store in gen-data folder: Zenodo badge
  • Run scalability_test.py - it should take several hours (over 10) and consume a moderate amount of memory.
  • Run scalability_analysis.py.
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Python and Julia in harmony.
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

✔️ Visual, reactive testing library for Julia. Time machine included.
✔️ Visual, reactive testing library for Julia. Time machine included.

PlutoTest.jl (alpha release) Visual, reactive testing library for Julia A macro @test that you can use to verify your code's correctness. But instead

Comments
  • Fix python versions ~~using poetry~~

    Fix python versions ~~using poetry~~

    To prevent this pull request from becoming too large, I'll merge this and create a new issue to set the python versions.

    Originally posted by @abelsiqueira in https://github.com/abelsiqueira/call-julia-from-python-experiments/issues/1#issuecomment-987970132

    opened by abelsiqueira 1
  • Improve docker-10

    Improve docker-10

    Fixes: #10

    • Changes Ubuntu version to 21.10
    • Adds extra environment variables
    • Removes the Python virtual environment
    • Add make flags to compile the tools faster
    • Remove the downloaded tar files
    • Uninstall dev dependencies
    opened by fdiblen 0
Releases(v0.3.0)
Owner
Abel Siqueira
Abel Siqueira
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
PointCNN: Convolution On X-Transformed Points (NeurIPS 2018)

PointCNN: Convolution On X-Transformed Points Created by Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Introduction PointCNN

Yangyan Li 1.3k Dec 21, 2022
Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers

Dimension Reduced Turbulent Flow Data From Deep Vector Quantizers This is an implementation of A Physics-Informed Vector Quantized Autoencoder for Dat

DreamSoul 3 Sep 12, 2022
Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Unofficial Pytorch Lightning implementation of Contrastive Syn-to-Real Generalization (ICLR, 2021)

Gyeongjae Choi 17 Sep 23, 2021
g2o: A General Framework for Graph Optimization

g2o - General Graph Optimization Linux: Windows: g2o is an open-source C++ framework for optimizing graph-based nonlinear error functions. g2o has bee

Rainer Kümmerle 2.5k Dec 30, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ)

Real2CAD-3DV Shape Matching of Real 3D Object Data to Synthetic 3D CADs (3DV project @ ETHZ) Group Member: Yue Pan, Yuanwen Yue, Bingxin Ke, Yujie He

24 Jun 22, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Codes for TIM2021 paper "Anchor-Based Spatio-Temporal Attention 3-D Convolutional Networks for Dynamic 3-D Point Cloud Sequences"

Intelligent Robotics and Machine Vision Lab 4 Jul 19, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023