Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Overview

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have updated this code for newer versions of Tensorflow and Python - see information below and Issues section.


This repository contains code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks. For an intuitive overview of the paper, read the blog post.

Looking for test set output?

The test set output of the models described in the paper can be found here.

Looking for pretrained model?

A pretrained model is available here:

(The only difference between these two is the naming of some of the variables in the checkpoint. Tensorflow 1.0 uses lstm_cell/biases and lstm_cell/weights whereas Tensorflow 1.2.1 uses lstm_cell/bias and lstm_cell/kernel).

Note: This pretrained model is not the exact same model that is reported in the paper. That is, it is the same architecture, trained with the same settings, but resulting from a different training run. Consequently this pretrained model has slightly lower ROUGE scores than those reported in the paper. This is probably due to us slightly overfitting to the randomness in our original experiments (in the original experiments we tried various hyperparameter settings and selected the model that performed best). Repeating the experiment once with the same settings did not perform quite as well. Better results might be obtained from further hyperparameter tuning.

Why can't you release the trained model reported in the paper? Due to changes to the code between the original experiments and the time of releasing the code (e.g. TensorFlow version changes, lots of code cleanup), it is not possible to release the original trained model files.

Looking for CNN / Daily Mail data?

Instructions are here.

About this code

This code is based on the TextSum code from Google Brain.

This code was developed for Tensorflow 0.12, but has been updated to run with Tensorflow 1.0. In particular, the code in attention_decoder.py is based on tf.contrib.legacy_seq2seq_attention_decoder, which is now outdated. Tensorflow 1.0's new seq2seq library probably provides a way to do this (as well as beam search) more elegantly and efficiently in the future.

Python 3 version: This code is in Python 2. If you want a Python 3 version, see @becxer's fork.

How to run

Get the dataset

To obtain the CNN / Daily Mail dataset, follow the instructions here. Once finished, you should have chunked datafiles train_000.bin, ..., train_287.bin, val_000.bin, ..., val_013.bin, test_000.bin, ..., test_011.bin (each contains 1000 examples) and a vocabulary file vocab.

Note: If you did this before 7th May 2017, follow the instructions here to correct a bug in the process.

Run training

To train your model, run:

python run_summarization.py --mode=train --data_path=/path/to/chunked/train_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

This will create a subdirectory of your specified log_root called myexperiment where all checkpoints and other data will be saved. Then the model will start training using the train_*.bin files as training data.

Warning: Using default settings as in the above command, both initializing the model and running training iterations will probably be quite slow. To make things faster, try setting the following flags (especially max_enc_steps and max_dec_steps) to something smaller than the defaults specified in run_summarization.py: hidden_dim, emb_dim, batch_size, max_enc_steps, max_dec_steps, vocab_size.

Increasing sequence length during training: Note that to obtain the results described in the paper, we increase the values of max_enc_steps and max_dec_steps in stages throughout training (mostly so we can perform quicker iterations during early stages of training). If you wish to do the same, start with small values of max_enc_steps and max_dec_steps, then interrupt and restart the job with larger values when you want to increase them.

Run (concurrent) eval

You may want to run a concurrent evaluation job, that runs your model on the validation set and logs the loss. To do this, run:

python run_summarization.py --mode=eval --data_path=/path/to/chunked/val_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

Note: you want to run the above command using the same settings you entered for your training job.

Restoring snapshots: The eval job saves a snapshot of the model that scored the lowest loss on the validation data so far. You may want to restore one of these "best models", e.g. if your training job has overfit, or if the training checkpoint has become corrupted by NaN values. To do this, run your train command plus the --restore_best_model=1 flag. This will copy the best model in the eval directory to the train directory. Then run the usual train command again.

Run beam search decoding

To run beam search decoding:

python run_summarization.py --mode=decode --data_path=/path/to/chunked/val_* --vocab_path=/path/to/vocab --log_root=/path/to/a/log/directory --exp_name=myexperiment

Note: you want to run the above command using the same settings you entered for your training job (plus any decode mode specific flags like beam_size).

This will repeatedly load random examples from your specified datafile and generate a summary using beam search. The results will be printed to screen.

Visualize your output: Additionally, the decode job produces a file called attn_vis_data.json. This file provides the data necessary for an in-browser visualization tool that allows you to view the attention distributions projected onto the text. To use the visualizer, follow the instructions here.

If you want to run evaluation on the entire validation or test set and get ROUGE scores, set the flag single_pass=1. This will go through the entire dataset in order, writing the generated summaries to file, and then run evaluation using pyrouge. (Note this will not produce the attn_vis_data.json files for the attention visualizer).

Evaluate with ROUGE

decode.py uses the Python package pyrouge to run ROUGE evaluation. pyrouge provides an easier-to-use interface for the official Perl ROUGE package, which you must install for pyrouge to work. Here are some useful instructions on how to do this:

Note: As of 18th May 2017 the website for the official Perl package appears to be down. Unfortunately you need to download a directory called ROUGE-1.5.5 from there. As an alternative, it seems that you can get that directory from here (however, the version of pyrouge in that repo appears to be outdated, so best to install pyrouge from the official source).

Tensorboard

Run Tensorboard from the experiment directory (in the example above, myexperiment). You should be able to see data from the train and eval runs. If you select "embeddings", you should also see your word embeddings visualized.

Help, I've got NaNs!

For reasons that are difficult to diagnose, NaNs sometimes occur during training, making the loss=NaN and sometimes also corrupting the model checkpoint with NaN values, making it unusable. Here are some suggestions:

  • If training stopped with the Loss is not finite. Stopping. exception, you can just try restarting. It may be that the checkpoint is not corrupted.
  • You can check if your checkpoint is corrupted by using the inspect_checkpoint.py script. If it says that all values are finite, then your checkpoint is OK and you can try resuming training with it.
  • The training job is set to keep 3 checkpoints at any one time (see the max_to_keep variable in run_summarization.py). If your newer checkpoint is corrupted, it may be that one of the older ones is not. You can switch to that checkpoint by editing the checkpoint file inside the train directory.
  • Alternatively, you can restore a "best model" from the eval directory. See the note Restoring snapshots above.
  • If you want to try to diagnose the cause of the NaNs, you can run with the --debug=1 flag turned on. This will run Tensorflow Debugger, which checks for NaNs and diagnoses their causes during training.
Owner
Abi See
Stanford PhD student in Natural Language Processing
Abi See
[BMVC 2021] Official PyTorch Implementation of Self-supervised learning of Image Scale and Orientation Estimation

Self-Supervised Learning of Image Scale and Orientation Estimation (BMVC 2021) This is the official implementation of the paper "Self-Supervised Learn

Jongmin Lee 17 Nov 10, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
A TensorFlow implementation of FCN-8s

FCN-8s implementation in TensorFlow Contents Overview Examples and demo video Dependencies How to use it Download pre-trained VGG-16 Overview This is

Pierluigi Ferrari 50 Aug 08, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

KUIELAB-MDX-Net got the 2nd place on the Leaderboard A and the 3rd place on the Leaderboard B in the MDX-Challenge ISMIR 2021

IELab@ Korea University 74 Dec 28, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection

ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection This repository contains implementation of the

Visual Understanding Lab @ Samsung AI Center Moscow 190 Dec 30, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022