The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments.

Overview

https://imgur.com/4qIqbRn.jpg

ABR Control

The ABR Control library is a python package for the control and path planning of robotic arms in real or simulated environments. ABR Control provides API's for the Mujoco, CoppeliaSim (formerly known as VREP), and Pygame simulation environments, and arm configuration files for one, two, and three-joint models, as well as the UR5 and Kinova Jaco 2 arms. Users can also easily extend the package to run with custom arm configurations. ABR Control auto-generates efficient C code for generating the control signals, or uses Mujoco's internal functions to carry out the calculations.

ABR also provides an interface and config available for controlling a real Jaco 2 at the ABR_Jaco2 repository.

Installation

The ABR Control library depends on NumPy, SymPy, SciPy, CloudPickle, Cython, SetupTools, Nengo, and Matplotlib. We recommend using Anaconda. Note that installing in a clean environment will require compiling of the dependent libraries, and will take a few minutes.

To install ABR Control, clone this repository and run:

sudo apt-get install g++
sudo apt-get install python-dev
sudo apt-get install libfreetype6-dev
conda activate your_environment
python setup.py install
python setup.py develop

ABR Control is tested to work on Python 3.6+, Python 2 is not supported.

Optional Installation

Mujoco

If you would like to use the Mujoco API you will need to install a forked version of mujoco-py with hooks for exitting out of simulations with the ESC key. To use the mujoco API, make sure you are in your anaconda environment and run:

git clone https://github.com/studywolf/mujoco-py.git
cd mujoco-py
pip install -e .
pip install glfw>=1.8.3
pip install requests

Pygame

If you would like to use the Pygame API, from your anaconda environment run:

pip install pygame

Vrep

We support Vrep <=4.0. You will need to download Vrep and follow the installation instructions.

PyDMPs

Some of the path planners work through the use of dynamic movement primitives (DMPs). DMPs allow for a stable, generalizable, and easily extensible way of representing complex trajectories. Path planners making use of DMP are appended with 'dmp' in their filename and will require the installation of the pydmps repository. To install, from your Anaconda environment run:

pip install pydmps

Usage

The ABR Control repo is comprised of three parts: 1) arms, 2) controllers, and 3) interfaces.

1a) Arms: Using CoppeliaSim, Pygame, or a real arm

All of the required information about an arm model is kept in that arm's config file. To use the ABR Control library with a new arm, the user must provide the transformation matrices (written using SymPy expressions) from the robot's origin reference frame to each link's centre-of-mass (COM) and joints. These are specified sequentially, e.g. origin -> link0 COM, link0 COM -> joint0, joint0 -> link1 COM, etc. The arm config file and any simulation code is kept in a folder named the same as the arm in the abr_control/arms/ directory.

The ABR Control configuration base class uses the SymPy transform matrices to provide functions that will calculate the transforms, Jacobian, Jacobian derivative, inertia matrices, gravity forces, and centripetal and Coriolis effects for each joint and COM. These can be accessed:

from abr_control.arms import jaco2

robot_config = jaco2.Config()
# calculate the following given the arm state at joint_angles
robot_config.Tx('joint3', q=joint_angles)  # the (x, y, z) position of joint3
robot_config.M(q=joint_angles)  # calculate the inertia matrix in joint space
robot_config.J('EE', q=joint_angles)  # the Jacobian of the end-effector

By default, the use_cython parameter is set to True to allow for real-time control by generating optimized Cython code for each of the robot configuration functions. This can take a little bit of time to generate these functions, but they are saved in ~.cache/abr_control/arm_name/saved_functions where they will be loaded from for future runs. Note that a hash is saved for the config, so if any changes are made the functions will be regenerated during the next use. The cython optimization can be turned off on instantiation:

from abr_control.arms import ur5

robot_config = ur5.Config(use_cython=False)

Below are results from running the operational space controller with different controllers with use_cython=True and False.

docs/examples/timing.png

1b) Arms: Using Mujoco

When using Mujoco the process is a bit different. Mujoco handles the calculation of all the kinematics and dynamics functions, and only requires an xml config be made describing the kinematic chain. The Mujoco API page describes this in detail.

Detailed models can be created by importing 3D modeling stl files and using the mesh object type in the tag. An example of this is the abr_control/arms/jaco2/jaco2.xml. For users building their own models, you may specify the location of the xml with the folder parameter. For more details, please refer to the Mujoco documentation linked above and use the xml files in this repository as examples.

2) Controllers

Controllers make use of the robot configuration files to generate control signals that accomplish a given task (for most controllers this is reaching a target). The ABR Control library provides implementations of several primary controllers, including operational space, generalized coordinates (joint) space, sliding, and floating control.

When using an operational space controller, it is possible to also pass in secondary controllers to operate in the null space of the operational space controller. These secondary controllers can be set up to achieve secondary goals such as avoiding joint limits and obstacles, damping movement, or maintaining a configuration near a specified resting state.

In the path_planners folder there are several path planners that can be used in conjunction with the controllers. There are filters, linear and second order, which can be used to trace a path from the current position to the target without suddenly warping and causing large spikes in generated torque. The inverse kinematics planner takes in a target for the end-effector and returns a joint angle trajectory to follow. An arc path planner is also provided that creates an arcing path which can be useful when the arm has to reach over itself. This can help prevent self-collisions and odd arm configurations.

Each path planner also has the ability to generate a trajectory for end-effector orientation with the path_plannner.generate_orientation_path() function. This uses spherical linear interpolation (SLERP) to generate a set of orientations from a start to a target quaternion. The time profile will match that of the path planner instantiated (ie: a linear path planner will have a linear step in orientation over time, with a constant change in orientation, whereas a second order path planner will have a bell shaped profile with the largest steps occurring during the middle of the movement, with an acceleration and deceleration at the start and end, respectively.) In addition to filters, there is an example path planner using the dynamic movement primitives trajectory generation system.

Finally, there is an implementation of nonlinear adaptive control in the signals folder, as well as examples in Mujoco, PyGame, and CoppeliaSim showing how this class can be used to overcome unexpected forces acting on the arm.

3) Interfaces

For communications to and from the system under control, an interface API is used. The functions available in each class vary depending on the specific system, but must provide connect, disconnect, send_forces and get_feedback methods.

Putting everything together

A control loop using these three files looks like:

from abr_control.arms import jaco2
from abr_control.controllers import OSC
from abr_control.interfaces import CoppeliaSim

robot_config = jaco2.Config()
interface = CoppeliaSim(robot_config)
interface.connect()

ctrlr = OSC(robot_config, kp=20,
            # control (x, y, z) out of [x, y, z, alpha, beta, gamma]
            ctrlr_dof=[True, True, True, False, False, False])

target_xyz = [.2, .2, .5]  # in metres
target_orientation = [0, 0, 0]  # Euler angles, relevant when controlled
for ii in range(1000):
    feedback = interface.get_feedback()  # returns a dictionary with q, dq
    u = ctrlr.generate(
        q=feedback['q'],
        dq=feedback['dq'],
        target=np.hstack([target_xyz, target_orientation]))
    interface.send_forces(u)  # send forces and step CoppeliaSim sim forward

interface.disconnect()

NOTE that when using the Mujoco interface it is necessary to instantiate and connect the interface before instantiating the controller. Some parameters only get parsed from the xml once the arm config is linked to the mujoco interface, which happens upon connection.

Examples

The ABR Control repo comes with several examples that demonstrate the use of the different interfaces and controllers.

By default all of the PyGame examples run with the three-link MapleSim arm. You can also run the examples using the two-link Python arm by changing the import statement at the top of the example scripts.

To run the CoppeliaSim examples, have the most recent CoppeliaSim version open. By default, the CoppeliaSim examples all run with the UR5 or Jaco2 arm model. To change this, change which arm folder is imported at the top of the example script. The first time you run an example you will be promted to download the arm model. Simply select yes to download the file and the simulation will start once the download completes.

To run the Mujoco examples, you will be promted to download any mesh or texture files, if they are used in the xml config, similarly to the CoppeliaSim arm model. Once the download completes the simulation will start. If you are using the forked Mujoco-Py repository (See Optional Installation section) you can exit the simulation with the ESC key and pause with the spacebar.

Owner
Applied Brain Research
Applied Brain Research
Alternative firmware for ESP8266 with easy configuration using webUI, OTA updates, automation using timers or rules, expandability and entirely local control over MQTT, HTTP, Serial or KNX. Full documentation at

Alternative firmware for ESP8266/ESP32 based devices with easy configuration using webUI, OTA updates, automation using timers or rules, expandability

Theo Arends 59 Dec 26, 2022
Control DJI Tello with Raspberry Pi and PS4 Controller

Control-DJI-Tello-with-Raspberry-Pi-and-PS4-Controller Demo of this project see

MohammadReza Sharifi 24 Aug 11, 2022
Hardware-accelerated ROS2 packages for camera image processing.

Isaac ROS Image Pipeline Overview This metapackage offers similar functionality as the standard, CPU-based image_pipeline metapackage, but does so by

NVIDIA Isaac ROS 52 Dec 15, 2022
Fener ROS2 package version 2

Fener's ROS2 codes that runs on the vehicle. This node contains basic sensing and actuation nodes for vehicle control. Also example applications will be added.

Muhammed Sezer 1 Jan 18, 2022
This is a python script to grab data from Zyxel NSA310 NAS and display in Home Asisstant as sensors.

Home-Assistant Python Scripts Python Scripts for Home-Assistant (http://www.home-assistant.io) Zyxel-NSA310-Home-Assistant Monitoring This is a python

6 Oct 31, 2022
A versatile program that uses the raspberry pi camera and provides it as a service

PiCameleon Is a daemon program meant to provide the RaspberryPi Camera as a service while running according to a configuration.

André Esser 52 Oct 16, 2022
Aqara Camera G3 integration for Home Assistant

Aqara Camera G3 integration for Home Assistant ATTENTION: The component only works after enabled telnet. Only supportd stream. Not support still image

14 Dec 18, 2022
ArduinoWaterHeaterIOT - IoT Probe of a solar PV water heating system - Arduino, Python, MQTT, MySQL

ArduinoWaterHeaterIOT IoT Probe of a solar PV water heating system - Arduino, Raspberry Pi, Python, MQTT, MySQL The Arduino sends the AC and DC watts

Jacques Fourie 1 Jan 11, 2022
2021 Real Robot Challenge Phase2 attemp

Real_Robot_Challenge_Phase2_AE_attemp We(team name:thriftysnipe) are the first place winner of Phase1 in 2021 Real Robot Challenge. Please see this pa

Qiang Wang 2 Nov 15, 2021
Examples to accompany the

Examples to accompany the "Raspberry Pi Pico Python SDK" book published by Raspberry Pi Trading, which forms part of the technical documentation in support of Raspberry Pi Pico and the MicroPython po

Raspberry Pi 589 Jan 08, 2023
A Python script to monitor the latest block on an LCD.

PiHole-Monitoring A Python script to monitor the latest block on a lcd display. The first number represents the dns queries from the last 24h, the sec

Maxi 4 Dec 05, 2022
The robot is an autonomous small scale racing car using NVIDIA Jetson Nano.

The robot is an autonomous small scale racing car using NVIDIA Jetson Nano. This project utilizes deep learning neural network framework Keras/Tensorflow, together with computer vision library OpenCV

1 Dec 08, 2021
Example code to sending USB Gadget multimedia keys via Python

Send Multimedia USB HID Keys via Python As an USB Gadget in Linux This gives a simple script with zero dependencies that can easily run on any Linux d

DevOps Nirvana 2 Jan 02, 2023
智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件

Drone智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。

wwy 349 Jan 03, 2023
Simples Keylogger para Windows com um autoboot implementado no sistema

MKW Keylogger Keylogger simples para Windos com um autoboot implementado no sistema, o malware irá capturar pressionamentos de tecla e armazená-lo em

3 Jul 03, 2021
Transform a Raspberry Pi into a network diagnostic machine.

EtherView Last updated jan 30, 2022. Welcome to the EtherView project! This is a project to transform a RaspberryPi into a portable network diagnostic

1 Jan 30, 2022
Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API.

Hildebrand Glow (DCC) Integration Home Assistant integration for energy consumption data from UK SMETS (Smart) meters using the Hildebrand Glow API. T

Aniket 153 Dec 30, 2022
A ESP32 project template with a web interface built in React

ESP AP Webserver demo.mp4 This is my experiment with "mobile app development" for the ESP32. The project consists of two parts, the ESP32 code and the

8 Dec 15, 2022
A lightweight script for updating custom components for Home Assistant

Updater for Home Assistant This is a lightweight script for updating custom components for Home Assistant. If for some reason you do not want to use H

Alex X 12 Sep 21, 2022
A modular sequencer based on Pi Pico & EuroPi

PicoSequencer A modular sequencer based on Pi Pico & EuroPi by Zeno Van Moerkerke / Keurslager Kurt For now it is 'only' a trigger sequencer, but I si

5 Oct 27, 2022