[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

Overview

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links

PRs Welcome arXiv PWC PWC

This repo provides the model, code & data of our paper: LinkBERT: Pretraining Language Models with Document Links (ACL 2022). [PDF] [HuggingFace Models]

Overview

LinkBERT is a new pretrained language model (improvement of BERT) that captures document links such as hyperlinks and citation links to include knowledge that spans across multiple documents. Specifically, it was pretrained by feeding linked documents into the same language model context, besides using a single document as in BERT.

LinkBERT can be used as a drop-in replacement for BERT. It achieves better performance for general language understanding tasks (e.g. text classification), and is also particularly effective for knowledge-intensive tasks (e.g. question answering) and cross-document tasks (e.g. reading comprehension, document retrieval).

1. Pretrained Models

We release the pretrained LinkBERT (-base and -large sizes) for both the general domain and biomedical domain. These models have the same format as the HuggingFace BERT models, and you can easily switch them with LinkBERT models.

Model Size Domain Pretraining Corpus Download Link ( 🤗 HuggingFace)
LinkBERT-base 110M parameters General Wikipedia with hyperlinks michiyasunaga/LinkBERT-base
LinkBERT-large 340M parameters General Wikipedia with hyperlinks michiyasunaga/LinkBERT-large
BioLinkBERT-base 110M parameters Biomedicine PubMed with citation links michiyasunaga/BioLinkBERT-base
BioLinkBERT-large 340M parameters Biomedicine PubMed with citation links michiyasunaga/BioLinkBERT-large

To use these models in 🤗 Transformers:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('michiyasunaga/LinkBERT-large')
model = AutoModel.from_pretrained('michiyasunaga/LinkBERT-large')
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
outputs = model(**inputs)

To fine-tune the models, see Section 2 & 3 below. When fine-tuned on downstream tasks, LinkBERT achieves the following results.
General benchmarks (MRQA and GLUE):

HotpotQA TriviaQA SearchQA NaturalQ NewsQA SQuAD GLUE
F1 F1 F1 F1 F1 F1 Avg score
BERT-base 76.0 70.3 74.2 76.5 65.7 88.7 79.2
LinkBERT-base 78.2 73.9 76.8 78.3 69.3 90.1 79.6
BERT-large 78.1 73.7 78.3 79.0 70.9 91.1 80.7
LinkBERT-large 80.8 78.2 80.5 81.0 72.6 92.7 81.1

Biomedical benchmarks (BLURB, MedQA, MMLU, etc): BioLinkBERT attains new state-of-the-art 😊

BLURB score PubMedQA BioASQ MedQA-USMLE
PubmedBERT-base 81.10 55.8 87.5 38.1
BioLinkBERT-base 83.39 70.2 91.4 40.0
BioLinkBERT-large 84.30 72.2 94.8 44.6
MMLU-professional medicine
GPT-3 (175 params) 38.7
UnifiedQA (11B params) 43.2
BioLinkBERT-large (340M params) 50.7

2. Set up environment and data

Environment

Run the following commands to create a conda environment:

conda create -n linkbert python=3.8
source activate linkbert
pip install torch==1.10.1+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
pip install transformers==4.9.1 datasets==1.11.0 fairscale==0.4.0 wandb sklearn seqeval

Data

You can download the preprocessed datasets on which we evaluated LinkBERT from [here]. Simply download this zip file and unzip it. This includes:

  • MRQA question answering datasets (HotpotQA, TriviaQA, NaturalQuestions, SearchQA, NewsQA, SQuAD)
  • BLURB biomedical NLP datasets (PubMedQA, BioASQ, HoC, Chemprot, PICO, etc.)
  • MedQA-USMLE biomedical reasoning dataset.
  • MMLU-professional medicine reasoning dataset.

They are all preprocessed in the HuggingFace dataset format.

If you would like to preprocess the raw data from scratch, you can take the following steps:

  • First download the raw datasets from the original sources by following instructions in scripts/download_raw_data.sh
  • Then run the preprocessing scripts scripts/preprocess_{mrqa,blurb,medqa,mmlu}.py.

3. Fine-tune LinkBERT

Change the working directory to src/, and follow the instructions below for each dataset.

MRQA

To fine-tune for the MRQA datasets (HotpotQA, TriviaQA, NaturalQuestions, SearchQA, NewsQA, SQuAD), run commands listed in run_examples_mrqa_linkbert-{base,large}.sh.

BLURB

To fine-tune for the BLURB biomedial datasets (PubMedQA, BioASQ, HoC, Chemprot, PICO, etc.), run commands listed in run_examples_blurb_biolinkbert-{base,large}.sh.

MedQA & MMLU

To fine-tune for the MedQA-USMLE dataset, run commands listed in run_examples_medqa_biolinkbert-{base,large}.sh.

To evaluate the fine-tuned model additionally on MMLU-professional medicine, run the commands listed at the bottom of run_examples_medqa_biolinkbert-large.sh.

Reproducibility

We also provide Codalab worksheet, on which we record our experiments. You may find it useful for replicating the experiments using the same model, code, data, and environment.

Citation

If you find our work helpful, please cite the following:

@InProceedings{yasunaga2022linkbert,
  author =  {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
  title =   {LinkBERT: Pretraining Language Models with Document Links},
  year =    {2022},  
  booktitle = {Association for Computational Linguistics (ACL)},  
}
Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Code repo for "Transformer on a Diet" paper

Transformer on a Diet Reference: C Wang, Z Ye, A Zhang, Z Zhang, A Smola. "Transformer on a Diet". arXiv preprint arXiv (2020). Installation pip insta

cgraywang 31 Sep 26, 2021
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation

VID-Fusion VID-Fusion: Robust Visual-Inertial-Dynamics Odometry for Accurate External Force Estimation Authors: Ziming Ding , Tiankai Yang, Kunyi Zhan

ZJU FAST Lab 86 Nov 18, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
A treasure chest for visual recognition powered by PaddlePaddle

简体中文 | English PaddleClas 简介 飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集,助力使用者训练出更好的视觉模型和应用落地。 近期更新 2021.11.1 发布PP-ShiTu技术报告,新增饮料识别demo 2021.10.23 发

4.6k Dec 31, 2022
Reimplementation of Learning Mesh-based Simulation With Graph Networks

Pytorch Implementation of Learning Mesh-based Simulation With Graph Networks This is the unofficial implementation of the approach described in the pa

Jingwei Xu 33 Dec 14, 2022
PyTorch implementation of "Image-to-Image Translation Using Conditional Adversarial Networks".

pix2pix-pytorch PyTorch implementation of Image-to-Image Translation Using Conditional Adversarial Networks. Based on pix2pix by Phillip Isola et al.

mrzhu 383 Dec 17, 2022