Faster, modernized fork of the language identification tool langid.py

Overview

py3langid

py3langid is a fork of the standalone language identification tool langid.py by Marco Lui.

Original license: BSD-2-Clause. Fork license: BSD-3-Clause.

Changes in this fork

Execution speed has been improved and the code base has been optimized for Python 3.6+:

  • Loading the module with import is now about 10x faster
  • Language detection with langid.classify is now about 5x faster

For implementation details see this blog post: How to make language detection with langid.py faster.

Usage

Drop-in replacement

  1. Install the package:
    • pip3 install py3langid (or pip where applicable)
  2. Use it:
    • with Python: import py3langid as langid
    • on the command-line: langid

With Python

Basics:

>>> import py3langid as langid

>>> text = 'This text is in English.'
# identified language and probability
>>> langid.classify(text)
('en', -56.77428913116455)
# unpack the result tuple in variables
>>> lang, prob = langid.classify(text)
# all potential languages
>>> langid.rank(text)

More options:

>>> from py3langid.langid import LanguageIdentifier, MODEL_FILE

# subset of target languages
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE)
>>> identifier.set_languages(['de', 'en', 'fr'])
# this won't work well...
>>> identifier.classify('这样不好')
('en', -81.83166265487671)

# normalization of probabilities to an interval between 0 and 1
>>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>>> identifier.classify('This should be enough text.'))
('en', 1.0)

Note: the Numpy data type for the feature vector has been changed to optimize for speed. If results are inconsistent, try restoring the original setting:

>>> langid.classify(text, datatype='uint32')

On the command-line

# basic usage with probability normalization
$ echo "This should be enough text." | langid -n
('en', 1.0)

# define a subset of target languages
$ echo "This won't be recognized properly." | langid -n -l fr,it,tr
('it', 0.9703832808613264)

Legacy documentation

The docs below are provided for reference, only part of the functions are currently tested and maintained.

Introduction

langid.py is a standalone Language Identification (LangID) tool.

The design principles are as follows:

  1. Fast
  2. Pre-trained over a large number of languages (currently 97)
  3. Not sensitive to domain-specific features (e.g. HTML/XML markup)
  4. Single .py file with minimal dependencies
  5. Deployable as a web service

All that is required to run langid.py is Python >= 3.6 and numpy.

The accompanying training tools are still Python2-only.

langid.py is WSGI-compliant. langid.py will use fapws3 as a web server if available, and default to wsgiref.simple_server otherwise.

langid.py comes pre-trained on 97 languages (ISO 639-1 codes given):

af, am, an, ar, as, az, be, bg, bn, br, bs, ca, cs, cy, da, de, dz, el, en, eo, es, et, eu, fa, fi, fo, fr, ga, gl, gu, he, hi, hr, ht, hu, hy, id, is, it, ja, jv, ka, kk, km, kn, ko, ku, ky, la, lb, lo, lt, lv, mg, mk, ml, mn, mr, ms, mt, nb, ne, nl, nn, no, oc, or, pa, pl, ps, pt, qu, ro, ru, rw, se, si, sk, sl, sq, sr, sv, sw, ta, te, th, tl, tr, ug, uk, ur, vi, vo, wa, xh, zh, zu

The training data was drawn from 5 different sources:

  • JRC-Acquis
  • ClueWeb 09
  • Wikipedia
  • Reuters RCV2
  • Debian i18n

Usage

langid [options]
optional arguments:
-h, --help show this help message and exit
-s, --serve launch web service
--host=HOST host/ip to bind to
--port=PORT port to listen on
-v increase verbosity (repeat for greater effect)
-m MODEL load model from file
-l LANGS, --langs=LANGS
  comma-separated set of target ISO639 language codes (e.g en,de)
-r, --remote auto-detect IP address for remote access
-b, --batch specify a list of files on the command line
--demo launch an in-browser demo application
-d, --dist show full distribution over languages
-u URL, --url=URL
  langid of URL
--line process pipes line-by-line rather than as a document
-n, --normalize
  normalize confidence scores to probability values

The simplest way to use langid.py is as a command-line tool, and you can invoke using python langid.py. If you installed langid.py as a Python module (e.g. via pip install langid), you can invoke langid instead of python langid.py -n (the two are equivalent). This will cause a prompt to display. Enter text to identify, and hit enter:

>>> This is a test
('en', -54.41310358047485)
>>> Questa e una prova
('it', -35.41771221160889)

langid.py can also detect when the input is redirected (only tested under Linux), and in this case will process until EOF rather than until newline like in interactive mode:

python langid.py < README.rst
('en', -22552.496054649353)

The value returned is the unnormalized probability estimate for the language. Calculating the exact probability estimate is disabled by default, but can be enabled through a flag:

python langid.py -n < README.rst
('en', 1.0)

More details are provided in this README in the section on Probability Normalization.

You can also use langid.py as a Python library:

# python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("This is a test")
('en', -54.41310358047485)

Finally, langid.py can use Python's built-in wsgiref.simple_server (or fapws3 if available) to provide language identification as a web service. To do this, launch python langid.py -s, and access http://localhost:9008/detect . The web service supports GET, POST and PUT. If GET is performed with no data, a simple HTML forms interface is displayed.

The response is generated in JSON, here is an example:

{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

A utility such as curl can be used to access the web service:

# curl -d "q=This is a test" localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

You can also use HTTP PUT:

# curl -T readme.rst localhost:9008/detect
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                               Dload  Upload   Total   Spent    Left  Speed
100  2871  100   119  100  2752    117   2723  0:00:01  0:00:01 --:--:--  2727
{"responseData": {"confidence": -22552.496054649353, "language": "en"}, "responseDetails": null, "responseStatus": 200}

If no "q=XXX" key-value pair is present in the HTTP POST payload, langid.py will interpret the entire file as a single query. This allows for redirection via curl:

# echo "This is a test" | curl -d @- localhost:9008/detect
{"responseData": {"confidence": -54.41310358047485, "language": "en"}, "responseDetails": null, "responseStatus": 200}

langid.py will attempt to discover the host IP address automatically. Often, this is set to localhost(127.0.1.1), even though the machine has a different external IP address. langid.py can attempt to automatically discover the external IP address. To enable this functionality, start langid.py with the -r flag.

langid.py supports constraining of the output language set using the -l flag and a comma-separated list of ISO639-1 language codes (the -n flag enables probability normalization):

# python langid.py -n -l it,fr
>>> Io non parlo italiano
('it', 0.99999999988965627)
>>> Je ne parle pas français
('fr', 1.0)
>>> I don't speak english
('it', 0.92210605672341062)

When using langid.py as a library, the set_languages method can be used to constrain the language set:

python
Python 2.7.2+ (default, Oct  4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import langid
>>> langid.classify("I do not speak english")
('en', 0.57133487679900674)
>>> langid.set_languages(['de','fr','it'])
>>> langid.classify("I do not speak english")
('it', 0.99999835791478453)
>>> langid.set_languages(['en','it'])
>>> langid.classify("I do not speak english")
('en', 0.99176190378750373)

Batch Mode

langid.py supports batch mode processing, which can be invoked with the -b flag. In this mode, langid.py reads a list of paths to files to classify as arguments. If no arguments are supplied, langid.py reads the list of paths from stdin, this is useful for using langid.py with UNIX utilities such as find.

In batch mode, langid.py uses multiprocessing to invoke multiple instances of the classifier, utilizing all available CPUs to classify documents in parallel.

Probability Normalization

The probabilistic model implemented by langid.py involves the multiplication of a large number of probabilities. For computational reasons, the actual calculations are implemented in the log-probability space (a common numerical technique for dealing with vanishingly small probabilities). One side-effect of this is that it is not necessary to compute a full probability in order to determine the most probable language in a set of candidate languages. However, users sometimes find it helpful to have a "confidence" score for the probability prediction. Thus, langid.py implements a re-normalization that produces an output in the 0-1 range.

langid.py disables probability normalization by default. For command-line usages of langid.py, it can be enabled by passing the -n flag. For probability normalization in library use, the user must instantiate their own LanguageIdentifier. An example of such usage is as follows:

>> from py3langid.langid import LanguageIdentifier, MODEL_FILE
>> identifier = LanguageIdentifier.from_pickled_model(MODEL_FILE, norm_probs=True)
>> identifier.classify("This is a test")
('en', 0.9999999909903544)

Training a model

So far Python 2.7 only, see the original instructions.

Read more

langid.py is based on published research. [1] describes the LD feature selection technique in detail, and [2] provides more detail about the module langid.py itself.

[1] Lui, Marco and Timothy Baldwin (2011) Cross-domain Feature Selection for Language Identification, In Proceedings of the Fifth International Joint Conference on Natural Language Processing (IJCNLP 2011), Chiang Mai, Thailand, pp. 553—561. Available from http://www.aclweb.org/anthology/I11-1062

[2] Lui, Marco and Timothy Baldwin (2012) langid.py: An Off-the-shelf Language Identification Tool, In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL 2012), Demo Session, Jeju, Republic of Korea. Available from www.aclweb.org/anthology/P12-3005

Comments
  • Normalized probabilities: only 1.0 in output values

    Normalized probabilities: only 1.0 in output values

    Hi Adrien,

    I am currently testing py3langid and I noticed something strange: the normalized probability values in the output are systematically 1.0. I tested texts of different lengths (1 word to several paragraphs) in different languages. I'm using it with Python. Is this something you noticed before?

    Thanks, Aleksandra

    bug 
    opened by aleksandra-miletic 2
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Python3 branch (Sourcery refactored)

    Python3 branch (Sourcery refactored)

    Pull Request #2 refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    NOTE: As code is pushed to the original Pull Request, Sourcery will re-run and update (force-push) this Pull Request with new refactorings as necessary. If Sourcery finds no refactorings at any point, this Pull Request will be closed automatically.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the python3 branch, then run:

    git fetch origin sourcery/python3
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 1
  • Sourcery refactored master branch

    Sourcery refactored master branch

    Branch master refactored by Sourcery.

    If you're happy with these changes, merge this Pull Request using the Squash and merge strategy.

    See our documentation here.

    Run Sourcery locally

    Reduce the feedback loop during development by using the Sourcery editor plugin:

    Review changes via command line

    To manually merge these changes, make sure you're on the master branch, then run:

    git fetch origin sourcery/master
    git merge --ff-only FETCH_HEAD
    git reset HEAD^
    

    Help us improve this pull request!

    opened by sourcery-ai[bot] 0
Releases(v0.2.2)
  • v0.2.2(Jun 14, 2022)

    • Fixed bug in probability normalization (#6)
    • Fully implemented data type argument in classify()
    • Adapted training scripts to Python3 (untested)

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.2.1...v0.2.2

    Source code(tar.gz)
    Source code(zip)
  • v0.2.1(Mar 29, 2022)

  • v0.2.0(Nov 29, 2021)

    • Change Numpy data type for features (uint32uint16)
    • Code cleaning

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.2...v0.2.0

    Source code(tar.gz)
    Source code(zip)
  • v0.1.2(Nov 24, 2021)

    • Include data in non-wheel package versions
    • Faster module loading
    • Extended tests and readme

    Full Changelog: https://github.com/adbar/py3langid/compare/v0.1.0...v0.1.2

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Nov 23, 2021)

Owner
Adrien Barbaresi
Research scientist – natural language processing, web scraping and text analytics. Mostly with Python.
Adrien Barbaresi
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Maha is a text processing library specially developed to deal with Arabic text.

An Arabic text processing library intended for use in NLP applications Maha is a text processing library specially developed to deal with Arabic text.

Mohammad Al-Fetyani 184 Nov 27, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 829 Jan 07, 2023
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
AI and Machine Learning workflows on Anthos Bare Metal.

Hybrid and Sovereign AI on Anthos Bare Metal Table of Contents Overview Terraform as IaC Substrate ABM Cluster on GCE using Terraform TensorFlow ResNe

Google Cloud Platform 8 Nov 26, 2022
FB ID CLONER WUTHOT CHECKPOINT, FACEBOOK ID CLONE FROM FILE

* MY SOCIAL MEDIA : Programming And Memes Want to contact Mr. Error ? CONTACT : [ema

Mr. Error 9 Jun 17, 2021
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
JaQuAD: Japanese Question Answering Dataset

JaQuAD: Japanese Question Answering Dataset for Machine Reading Comprehension (2022, Skelter Labs)

SkelterLabs 84 Dec 27, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Jeffrey M. Binder 20 Jan 09, 2023