PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Related tags

Deep LearningStoryViz
Overview

Improving Generation and Evaluation of Visual Stories via Semantic Consistency

PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency". Link to arXiv paper: https://arxiv.org/abs/2105.10026

Requirements:

This code has been tested on torch==1.7.1 and torchvision==0.8.2

Prepare Repository:

Download the PororoSV dataset and associated files from here and save it as ./data. Download GloVe embeddings (glove.840B.300D) from here. The default location of the embeddings is ./data/ (see ./dcsgan/miscc/config.py).

Training DuCo-StoryGAN:

To train DuCo-StoryGAN, first train the VideoCaptioning model on the PororoSV dataset:
python train_mart.py --data_dir
Default parameters were used to train the model used in our paper.

Next, train the generative model:
python train_gan.py --cfg ./cfg/pororo_s1_duco.yml --data_dir
If training DuCo-StoryGAN on a new dataset, make sure to train the Video Captioning model (see below) before training the GAN. The vocabulary file prepared for the video-captioning model is re-used for generating common input_ids for both models. Change location of video captioning checkpoint in config file.

Unless specified, the default output root directory for all model checkpoints is ./out/

Training Evaluation Models:

  • Video Captioning Model
    The video captioning model trained for DuCo-StoryGAN (see above) is used for evaluation. python train_mart.py --data_dir

  • Hierarchical Deep Multimodal Similarity (H-DAMSM)
    python train_damsm.py --cfg ./cfg/pororo_damsm.yml --data_dir

  • Character Classifier
    python train_classifier.py --data_dir --model_name inception --save_path ./models/inception --batch_size 8 --learning_rate 1e-05

Inference from DuCo-StoryGAN:

Use the following command to infer from trained weights for DuCo-StoryGAN:
python train_gan.py --cfg ./cfg/pororo_s1_duco_eval.yml --data_dir --checkpoint --infer_dir

Download our pretrained checkpoint from here.

Evaluation:

Download the pretrained models for evaluations:
Character Classifier, Video Captioning

Use the following command to evaluate classification accuracy of generated images:
python eval_scripts/eval_classifier.py --image_path --data_dir --model_path --model_name inception --mode

Use the following command to evaluate BLEU Score of generated images:
python eval_scripts/translate.py --batch_size 50 --pred_dir --data_dir --checkpoint_file --eval_mode

Acknowledgements

The code in this repository has been adapted from the MART, StoryGAN and MirrorGAN codebases.

Owner
Adyasha Maharana
Adyasha Maharana
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Code for the Convolutional Vision Transformer (ConViT)

ConViT : Vision Transformers with Convolutional Inductive Biases This repository contains PyTorch code for ConViT. It builds on code from the Data-Eff

Facebook Research 418 Jan 06, 2023
DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification

DynamicViT: Efficient Vision Transformers with Dynamic Token Sparsification Created by Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, Ch

Yongming Rao 414 Jan 01, 2023
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
🐾 Semantic segmentation of paws from cute pet images (PyTorch)

🐾 paw-segmentation 🐾 Semantic segmentation of paws from cute pet images 🐾 Semantic segmentation of paws from cute pet images (PyTorch) 🐾 Paw Segme

Zabir Al Nazi Nabil 3 Feb 01, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling @ INTERSPEECH 2021 Accepted

NU-Wave — Official PyTorch Implementation NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling Junhyeok Lee, Seungu Han @ MINDsLab Inc

MINDs Lab 242 Dec 23, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022