Implementation of PersonaGPT Dialog Model

Overview

PersonaGPT

An open-domain conversational agent with many personalities

PersonaGPT is an open-domain conversational agent cpable of decoding personalized and controlled responses based on user input. It is built on the pretrained DialoGPT-medium model, following the GPT-2 architecture. PersonaGPT is fine-tuned on the Persona-Chat dataset, with added special tokens to better distinguish between conversational history and personality traits for dyadic conversations. Furthermore, some active learning was used to train the model to do controlled decoding based on certain "action codes" (e.g., talk about work, ask about music interests).


Personalized Dialog Generation

Also called persona modeling, personalized dialog generation takes as input a set of personality facts and dialog history to generate responses that are (ideally) sensible and diverse, yet consistent with past responses and the given persona profile.

Example

Persona Facts
1 i am 64 years old but feel quite young.
2 i try to eat healthy but limit mcdonalds to once a week.
3 i regret working as a doctor for the last 20 years.
4 my secret hobby is making self-help youtube videos.
5 i've been to spain many times and wish i could go again.
Role Response
Human yo whats good fam?
Bot hello, how are you doing?
Human not bad what you doing today?
Bot eating a lot healthier now that i'm in my 60s
Human i'm more of a fast food guy
Bot me too but i'm very healthy so i try to avoid it
Human what do you do for fun?
Bot i make videos for fun and eat very healthy
Human nice what kind of videos?
Bot i love making videos about self help stuff
Human i think i need some help
Bot what kind of help would you like to get
Human i'm 21 and feel lost in life
Bot i can relate, i'm only 65

Controlled Response Generation

Another feature of PersonaGPT is generating responses that directs conversations toward certain topics of interests. The following is a self-play episode between 2 PersonaGPT agents, one interviews the other.

Bot 2's Persona Facts
1 i am a quiet engineer.
2 i'm single and am looking for love.
3 sadly, i don't have any relatable hobbies.
4 luckily, however, i am tall and athletic.
5 on friday nights, i watch re-runs of the simpsons alone.
Role Action Response
Bot 1 talk about movies hello do you like movies?
Bot 2 - i love the simpsons. how about you?
Bot 1 talk about music i like the walking dead. do you play an instrument?
Bot 2 - yes i play the violin.
Bot 1 ask about marital status are you married or single?
Bot 2 - i am single but i am looking for love.
Bot 1 talk about work my job is working in a factory. what's your occupation?
Bot 2 - engineer. i'm very quiet so no one hears me.
Bot 1 talk about hobbies do you have any hobbies?
Bot 2 - i watch reruns of the simpsons.
Bot 1 ask about favorite food what's your favorite food?
Bot 2 - i love pizza. how about yourself?
Bot 1 ask about pets i also love pizza. do you like animals?
Bot 2 - i have two dogs. what is your occupation?
Bot 1 talk about work i'm a factory worker. what's your dream job?
Bot 2 - i'd love to be a writer one day.

Interactive Environment

To interact with PersonaGPT, run interact.py --mode 0 to manually enter responses and see how the bot responds. You will first be prompted to enter a set of persona facts for your partner and then engage in a short conversation.

Use -turns or --num_turns to adjust the length of conversation (default = 8). To adjust the decoding parameters of PersonaGPT, use --help to bring up available settings to tune. For example, --top_k (default = 10) controls the number of candidate tokens at each decoding step, and --top_p controls the nucleus sampling. See how to generate text from Huggingface for nuances of the GPT decoding process.

To engage in controlled response generation, run interact.py --mode 1. At each turn, you will be prompted to select from a set of topics from which to steer the conversation toward. The output response by PersonaGPT may not always steer the conversation to the topic of interest, depending on the dialog history up to the current turn.


Training

Below are instructions to reconstruct the PersonaGPT from "scratch" (i.e., from pretrained DialoGPT or GPT-2, either of which are feasible as starting pre-trained models).

Requirements:

  • Python 3.6+
  • Pytorch (GPU preferred)
  • transformers
  • dotenv
  • tqdm
  • (optional) apex for fp16 training It is highly recommended that the pytorch and transformers packages are installed under a virtual environment.

After cloning this repository, follow the directions below to set up the training environment.

Instructions:

  1. Go to the .env file and set the save_path to your desired local repository to store model, scheduler and optimizer checkpoints. Point data_path to the ~/data folder of the cloned repository. The .env file also contains the hyperparameter configurations:
epochs = 3
learn_rate = 5e-5
gradient_accumulation_steps = 64
batch_size = 1
weight_decay = 0.0
logging_steps = 10
save_steps = 250

Replace epochs, batch_size, gradient_accumulation_steps and learn_rate with the desired hyperparameters of choice. Please use batch_size = 1 and change gradient accumulation steps to adjust the training batch size. This current repo version does not support parallel batching at the moment (TODO).

  1. Run preprocess_dataset.py to preprocess ~/data/train_both_original_no_cands.txt and ~/data/valid_both_original_no_cands.txt. The original .txt files are obtained from the ConvAI2 Challenge, which may no longer be available since the ConvAI3 challenge has taken place. The ConvAI2 challenge data uses the Persona-Chat dataset which is what is provided under the ~/data folder.

  2. Run train.py to train the PersonaGPT model. Results (e.g., pretrain_loss, persona_loss, ctrl_loss) will be saved under [save_path]/samples/. Model checkpoints are saved under [save_path]/checkpoint/model.

Currently there are 2 training loops, pretrain() and train_loop(). pretrain() first trains model on the Persona-Chat dataset and saves the performance under pretrain_stats. train_loop() then fine-tunes the model on active learning data, which examples of using action codes (e.g., "talk about hobbies", "ask about pets") to do controlled response generation. The pretrained model can be used as as stand-alone dialog model for personalized dialog generation without fine-tuning on the actively learned actions.

  • pretrain_loss: tracks the training loss on Persona-Chat dataset during pretrain().
  • persona_loss: tracks the training loss on Persona-Chat during train_loop().
  • ctrl_loss: tracks the training loss on actively learned action codes during train_loop().

Active Learning

Currently, there are 11 possible turn-level goals that can be used for controlled response generation.

Turn-level Goals
1. ask about family. 4. talk about traveling. 7. talk about music.
2. ask about pets. 5. ask about age and gender. 8. talk about food.
3. talk about work. 6. talk about hobbies. 9. talk about movies.
10. talk about politics. 11. ask about marital status. -

These turn-level goals are handcrafted based on the personachat dataset to cover most of the conversational directions at the turn-level.

To actively learn new turn-level goals, use the convogym repo.


Evaluation

After training, an evaluation loop will run and print out a set of scores saved under eval_stats. Below is a comparison of PersonaGPT vs. other baselines on the Persona-Chat dataset using automatic evaluation metrics. Your results should look something like:

Model Perplexity F1 Score
Seq2seq Baseline [3] 29.8 16.2
Wolf et al. [5] 16.3 19.5
GPT-2 baseline 99.5 5.8
DialoGPT baseline 56.6 12.6
DialoGPT finetuned 11.4 22.7
PersonaGPT 10.2 43.4

Cite Us

Our full paper is now up on arXiv.

@misc{tang2021persona,
      title={Persona Authentication through Generative Dialogue}, 
      author={Fengyi Tang and Lifan Zeng and Fei Wang and Jiayu Zhou},
      year={2021},
      eprint={2110.12949},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

  1. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019): 9.

  2. Zhang, Yizhe, et al. "Dialogpt: Large-scale generative pre-training for conversational response generation." arXiv preprint arXiv:1911.00536 (2019).

  3. Zhang, Saizheng, et al. "Personalizing dialogue agents: I have a dog, do you have pets too?." arXiv preprint arXiv:1801.07243 (2018).

  4. Dinan et al., "The Second Conversational Intelligence Challenge (ConvAI2)." arXiv preprint arXiv:1902.00098 (2019).

  5. Thomas Wolf et al. "Transfertransfo: A transfer learning approach for neural network based conversational agents." arXiv preprint328arXiv:1901.08149, 2019

Owner
ILLIDAN Lab
Intelligent Data Analytics Lab @ MSU : Creating Large-Scale Machine Learning Algorithms for Big Data Analytics
ILLIDAN Lab
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Cross-platform-profile-pic-changer - Script to change profile pictures across multiple platforms

cross-platform-profile-pic-changer script to change profile pictures across mult

4 Jan 17, 2022
Score refinement for confidence-based 3D multi-object tracking

Score refinement for confidence-based 3D multi-object tracking Our video gives a brief explanation of our Method. This is the official code for the pa

Cognitive Systems Research Group 47 Dec 26, 2022
PyoMyo - Python Opensource Myo library

PyoMyo Python module for the Thalmic Labs Myo armband. Cross platform and multithreaded and works without the Myo SDK. pip install pyomyo Documentati

PerlinWarp 81 Jan 08, 2023
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Knowledge Distillation Toolbox for Semantic Segmentation

SegDistill: Toolbox for Knowledge Distillation on Semantic Segmentation Networks This repo contains the supported code and configuration files for Seg

9 Dec 12, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Nodule Generation Algorithm Baseline and template code for node21 generation track

Nodule Generation Algorithm This codebase implements a simple baseline model, by following the main steps in the paper published by Litjens et al. for

node21challenge 10 Apr 21, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023