Seq2seq - Sequence to Sequence Learning with Keras

Related tags

Deep Learningseq2seq
Overview

Seq2seq

Sequence to Sequence Learning with Keras

Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python deep learning library Keras. Using Seq2Seq, you can build and train sequence-to-sequence neural network models in Keras. Such models are useful for machine translation, chatbots (see [4]), parsers, or whatever that comes to your mind.

seq2seq

Getting started

Seq2Seq contains modular and reusable layers that you can use to build your own seq2seq models as well as built-in models that work out of the box. Seq2Seq models can be compiled as they are or added as layers to a bigger model. Every Seq2Seq model has 2 primary layers : the encoder and the decoder. Generally, the encoder encodes the input sequence to an internal representation called 'context vector' which is used by the decoder to generate the output sequence. The lengths of input and output sequences can be different, as there is no explicit one on one relation between the input and output sequences. In addition to the encoder and decoder layers, a Seq2Seq model may also contain layers such as the left-stack (Stacked LSTMs on the encoder side), the right-stack (Stacked LSTMs on the decoder side), resizers (for shape compatibility between the encoder and the decoder) and dropout layers to avoid overfitting. The source code is heavily documented, so lets go straight to the examples:

A simple Seq2Seq model:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8)
model.compile(loss='mse', optimizer='rmsprop')

That's it! You have successfully compiled a minimal Seq2Seq model! Next, let's build a 6 layer deep Seq2Seq model (3 layers for encoding, 3 layers for decoding).

Deep Seq2Seq models:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=8, depth=3)
model.compile(loss='mse', optimizer='rmsprop')

Notice that we have specified the depth for both encoder and decoder as 3, and your model has a total depth of 3 + 3 = 6. You can also specify different depths for the encoder and the decoder. Example:

import seq2seq
from seq2seq.models import SimpleSeq2Seq

model = SimpleSeq2Seq(input_dim=5, hidden_dim=10, output_length=8, output_dim=20, depth=(4, 5))
model.compile(loss='mse', optimizer='rmsprop')

Notice that the depth is specified as tuple, (4, 5). Which means your encoder will be 4 layers deep whereas your decoder will be 5 layers deep. And your model will have a total depth of 4 + 5 = 9.

Advanced Seq2Seq models:

Until now, you have been using the SimpleSeq2Seq model, which is a very minimalistic model. In the actual Seq2Seq implementation described in [1], the hidden state of the encoder is transferred to decoder. Also, the output of decoder at each timestep becomes the input to the decoder at the next time step. To make things more complicated, the hidden state is propogated throughout the LSTM stack. But you have no reason to worry, as we have a built-in model that does all that out of the box. Example:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

Note that we had to specify the complete input shape, including the samples dimensions. This is because we need a static hidden state(similar to a stateful RNN) for transferring it across layers. (Update : Full input shape is not required in the latest version, since we switched to Recurrent Shop backend). By the way, Seq2Seq models also support the stateful argument, in case you need it.

You can also experiment with the hidden state propogation turned off. Simply set the arguments broadcast_state and inner_broadcast_state to False.

Peeky Seq2seq model:

Let's not stop there. Let's build a model similar to cho et al 2014, where the decoder gets a 'peek' at the context vector at every timestep.

cho et al 2014

To achieve this, simply add the argument peek=True:

import seq2seq
from seq2seq.models import Seq2Seq

model = Seq2Seq(batch_input_shape=(16, 7, 5), hidden_dim=10, output_length=8, output_dim=20, depth=4, peek=True)
model.compile(loss='mse', optimizer='rmsprop')

Seq2seq model with attention:

Attention Seq2seq

Let's not stop there either. In all the models described above, there is no allignment between the input sequence elements and the output sequence elements. But for machine translation, learning a soft allignment between the input and output sequences imporves performance.[3]. The Seq2seq framework includes a ready made attention model which does the same. Note that in the attention model, there is no hidden state propogation, and a bidirectional LSTM encoder is used by default. Example:

import seq2seq
from seq2seq.models import AttentionSeq2Seq

model = AttentionSeq2Seq(input_dim=5, input_length=7, hidden_dim=10, output_length=8, output_dim=20, depth=4)
model.compile(loss='mse', optimizer='rmsprop')

As you can see, in the attention model you need not specify the samples dimension as there are no static hidden states involved(But you have to if you are building a stateful Seq2seq model). Note: You can set the argument bidirectional=False if you wish not to use a bidirectional encoder.

Final Words

That's all for now. Hope you love this library. For any questions you might have, create an issue and I will get in touch. You can also contribute to this project by reporting bugs, adding new examples, datasets or models.

Installation:

sudo pip install git+https://github.com/farizrahman4u/seq2seq.git

Requirements:

Working Example:

Papers:

Owner
Fariz Rahman
Fariz Rahman
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
yufan 81 Dec 08, 2022
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Code and experiments for "Deep Neural Networks for Rank Consistent Ordinal Regression based on Conditional Probabilities"

corn-ordinal-neuralnet This repository contains the orginal model code and experiment logs for the paper "Deep Neural Networks for Rank Consistent Ord

Raschka Research Group 14 Dec 27, 2022
Cache Requests in Deta Bases and Echo them with Deta Micros

Deta Echo Cache Leverage the awesome Deta Micros and Deta Base to cache requests and echo them as needed. Stop worrying about slow public APIs or agre

Gingerbreadfork 8 Dec 07, 2021
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022