[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

Overview

NYU-VPR

This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences.

Here is a graphical user interface (GUI) for using VPR methods on custom datasets: https://github.com/ai4ce/VPR-GUI-Tool

Requirements

To install requirements:

pip install -r requirements.txt

Data Processing

1. Image Anonymization

To install mseg-api:

cd segmentation
cd mseg-api
pip install -e .

Make sure that you can run python -c "import mseg" in python.

To install mseg-semantic:

cd segmentation
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

cd ../mseg-semantic
pip install -e .

Make sure that you can run python -c "import mseg_semantic" in python.

Finally:

input_file=/path/to/my/directory
model_name=mseg-3m
model_path=mseg_semantic/mseg-3m.pth
config=mseg_semantic/config/test/default_config_360_ms.yaml
python -u mseg_semantic/tool/universal_demo.py --config=${config} model_name {model_name} model_path ${model_path} input_file ${input_file}

2. Image Filtration

Inside the process folder, use whiteFilter.py to filter images with white pixel percentage.

Methods

1. VLAD+SURF

Modify vlad_codebook_generation.py line 157 - 170 to fit the dataset.

cd test/vlad
python vlad_codebook_generation.py
python query_image_closest_image_generation.py

*Notice: the processing may take a few hours.

2. VLAD+SuperPoint

cd test/vlad_SP
python main.py
python find_closest.py

*Notice: the processing may take a few hours.

3. NetVLAD

4. PoseNet

Copy the train_image_paths.txt and test_image_paths.txt to test/posenet.

Obtain the latitude and longtitude of training images and convert them to normalized Universal Transverse Mercator (UTM) coordinates.

cd test/posenet
python getGPS.py
python mean.py

Start training. This may take several hours. Suggestion: use slurm to run the process.

python train.py --image_path path_to_train_images/ --metadata_path trainNorm.txt

Generate the input file for testing from test_image_paths.txt.

python gen_test_txt.py

Start testing.

python single_test.py --image_path path_to_test_images/ --metadata_path test.txt --weights_path models_trainNorm/best_net.pth

The predicted normalized UTM coordinates of test images is in the image_name.txt. Match the test images with the training images based on their location.

python match.py

The matching result is in the match.txt.

5. DBoW

Copy the train_image_paths.txt and test_image_paths.txt to test/DBow3/utils. Copy and paste the content of test_image_paths.txt at the end of train_image_paths.txt and save the text file as total_images_paths.txt.

Open test/DBow3/utils/demo_general.cpp file. Change the for loop range at line 117 and line 123. Both ranges are the range of lines in total_images_paths.txt. The first for loop range is the range of test images and the second range is the range of training images. To run with multi-thread, you may run the code multiple times with small ranges of test images where the sum of ranges equals to the number of lines in test_image_paths.txt.

Compile and run the code.

cd test/DBow3
cmake .
cd utils
make
./demo_general a b

The result of each test image and its top-5 matched training images is in the output.txt.

Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
Code for Temporally Abstract Partial Models

Code for Temporally Abstract Partial Models Accompanies the code for the experimental section of the paper: Temporally Abstract Partial Models, Khetar

DeepMind 19 Jul 13, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Data Engineering ZoomCamp

Data Engineering ZoomCamp I'm partaking in a Data Engineering Bootcamp / Zoomcamp and will be tracking my progress here. I can't promise these notes w

Aaron 61 Jan 06, 2023
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023