Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Overview

Topographic Variational Autoencoder

Paper: https://arxiv.org/abs/2109.01394

Getting Started

Install requirements with Anaconda:

conda env create -f environment.yml

Activate the conda environment

conda activate tvae

Install the tvae package

Install the tvae package inside of your conda environment. This allows you to run experiments with the tvae command. At the root of the project directory run (using your environment's pip): pip3 install -e .

If you need help finding your environment's pip, try which python, which should point you to a directory such as .../anaconda3/envs/tvae/bin/ where it will be located.

(Optional) Setup Weights & Biases:

This repository uses Weight & Biases for experiment tracking. By deafult this is set to off. However, if you would like to use this (highly recommended!) functionality, all you have to do is set 'wandb_on': True in the experiment config, and set your account's project and entity names in the tvae/utils/logging.py file.

For more information on making a Weight & Biases account see (creating a weights and biases account) and the associated quickstart guide.

Running an experiment

To rerun the experiment from Figure 3, you can run:

  • tvae --name 'tvae_2d_mnist'

To rerun the experiments from Figure 4, you can run:

  • tvae --name 'tvae_Lpartial_mnist'
  • tvae --name 'tvae_Lpartial_dsprites'

To rerun the experiments from Tables 1, you can run:

  • tvae --name 'tvae_Lhalf_mnist'
  • tvae --name 'tvae_Lshort_mnist'
  • tvae --name 'bubbles_mnist'
  • tvae --name 'tvae_L0_mnist'
  • tvae --name 'nontvae_mnist'

To rerun the experiments from Tables 2, you can run:

  • tvae --name 'tvae_Lhalf_dsprites'
  • tvae --name 'tvae_Lpartial_dsprites'
  • tvae --name 'tvae_Lshort_dsprites'
  • tvae --name 'bubbles_dsprites'
  • tvae --name 'tvae_L0_dsprites'
  • tvae --name 'nontvae_dsprites'

To rerun the generalization experiment described in Section B.4 (resulting in Figures 1 and 6), you can run:

  • tvae --name 'tvae_Lpartial_mnist_generalization'

To rerun the experiments from Figures 22 and 23 (training on complex combined transformations), you can run:

  • tvae --name 'tvae_Lpartial_perspective_mnist'
  • tvae --name 'tvae_Lpartial_rotcolor_mnist'

Basics of the framework

  • All models are built using the TVAE module (see tvae/containers/tvae.py) which requires a z-encoder, a u-encoder, a decoder, and a 'grouper'. The grouper module defines the topographic structure of the latent space through a model (equivalent to W in the paper), and a padder which defines the boundary conditions.
  • All experiments can be found in tvae/experiments/, and begin with the model specification, followed by the experiment config where important values such as L (group_kernel) and K (n_off_diag) can be set.

Model Architecutre Options

  • 'n_caps': int, Number of independnt capsules
  • 'cap_dim': int, Size of each capsule
  • 'n_transforms': int, Length of the total transformation sequence (denoted S in the paper)
  • 'mu_init': int, Initalization value for mu parameter
  • 'n_off_diag': int, determines the spatial extent of the grouping within a single timestep (denoted K in the paper), n_off_diag=1 gives K=3, while n_off_diag=0 gives K=1.
  • 'group_kernel': tuple of int, defines the size of the kernel used by the grouper, exact definition and relationship to W varies for each experiment.

Training Options

  • 'wandb_on': bool, if True, use weights & biases logging
  • 'lr': float, learning rate
  • 'momentum': float, standard momentum used in SGD
  • 'max_epochs': int, total training epochs
  • 'eval_epochs': int, epochs between evaluation on the test (for MNIST)
  • 'batch_size': int, number of samples per batch
  • 'n_is_samples': int, number of importance samples when computing the log-likelihood on MNIST.
  • 'max_transform_len': int, (for dSprites) controls the subset of the dataset

Acknowledgements

The Robert Bosch GmbH is acknowledged for financial support.

Owner
T. Andy Keller
PhD Student at UvA
T. Andy Keller
CVPR2021: Temporal Context Aggregation Network for Temporal Action Proposal Refinement

Temporal Context Aggregation Network - Pytorch This repo holds the pytorch-version codes of paper: "Temporal Context Aggregation Network for Temporal

Zhiwu Qing 63 Sep 27, 2022
LineBoard - Python+React+MySQL-白板即時系統改善人群行為

LineBoard-白板即時系統改善人群行為 即時顯示實驗室的使用狀況,並遠端預約排隊,以此來改善人們的工作效率 程式架構 運作流程 使用者先至該實驗室網站預約

Bo-Jyun Huang 1 Feb 22, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
CountDown to New Year and shoot fireworks

CountDown and Shoot Fireworks About App This is an small application make you re

5 Dec 31, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022