Safe Policy Optimization with Local Features

Overview

Safe Policy Optimization with Local Feature (SPO-LF)

This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization with Local Generalized Linear Function Approximations" which was presented in NeurIPS-21.

Installation

There is requirements.txt in this repository. Except for the common modules (e.g., numpy, scipy), our source code depends on the following modules.

We also provide Dockerfile in this repository, which can be used for reproducing our grid-world experiment.

Simulation configuration

We manage the simulation configuration using hydra. Configurations are listed in config.yaml. For example, the algorithm to run should be chosen from the ones we implemented:

sim_type: {safe_glm, unsafe_glm, random, oracle, safe_gp_state, safe_gp_feature, safe_glm_stepwise}

Grid World Experiment

The source code necessary for our grid-world experiment is contained in /grid_world folder. To run the simulation, for example, use the following commands.

cd grid_world
python main.py sim_type=safe_glm env.reuse_env=False

For the monte carlo simulation while comparing our proposed method with baselines, use the shell file, run.sh.

We also provide a script for visualization. If you want to render how the agent behaves, use the following command.

python main.py sim_type=safe_glm env.reuse_env=True

Safety-Gym Experiment

The source code necessary for our safety-gym experiment is contained in /safety_gym_discrete folder. Our experiment is based on safety-gym. Our proposed method utilize dynamic programming algorithms to solve Bellman Equation, so we modified engine.py to discrtize the environment. We attach modified safety-gym source code in /safety_gym_discrete/engine.py. To use the modified library, please clone safety-gym, then replace safety-gym/safety_gym/envs/engine.py using /safety_gym_discrete/engine.py in our repo. Using the following commands to install the modified library:

cd safety_gym
pip install -e .

Note that MuJoCo licence is needed for installing Safety-Gym. To run the simulation, use the folowing commands.

cd safety_gym_discrete
python main.py sim_idx=0

We compare our proposed method with three notable baselines: CPO, PPO-Lagrangian, and TRPO-Lagrangian. The baseline implementation depends on safety-starter-agents. We modified run_agent.py in the repo source code.

To run the baseline, use the folowing commands.

cd safety_gym_discrete/baseline
python baseline_run.py sim_type=cpo

The environment that agent runs on is generated using generate_env.py. We provide 10 50*50 environments. If you want to generate other environments, you can change the world shape in safety_gym_discrete.py, and running the following commands:

cd safety_gym_discrete
python generate_env.py

Citation

If you find this code useful in your research, please consider citing:

@inproceedings{wachi_yue_sui_neurips2021,
  Author = {Wachi, Akifumi and Wei, Yunyue and Sui, Yanan},
  Title = {Safe Policy Optimization with Local Generalized Linear Function Approximations},
  Booktitle  = {Neural Information Processing Systems (NeurIPS)},
  Year = {2021}
}
Owner
Akifumi Wachi
Akifumi Wachi
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
🔎 Super-scale your images and run experiments with Residual Dense and Adversarial Networks.

Image Super-Resolution (ISR) The goal of this project is to upscale and improve the quality of low resolution images. This project contains Keras impl

idealo 4k Jan 08, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

ASAP-Net This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020). Overview We i

Hanwen Cao 26 Aug 25, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Unofficial Tensorflow 2 implementation of the paper Implicit Neural Representations with Periodic Activation Functions

Siren: Implicit Neural Representations with Periodic Activation Functions The unofficial Tensorflow 2 implementation of the paper Implicit Neural Repr

Seyma Yucer 2 Jun 27, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022