A simple flask application to collect annotations for the Turing Change Point Dataset, a benchmark dataset for change point detection algorithms

Overview

AnnotateChange

Welcome to the repository of the "AnnotateChange" application. This application was created to collect annotations of time series data in order to construct the Turing Change Point Dataset (TCPD). The TCPD is a dataset of real-world time series used to evaluate change point detection algorithms. For the change point detection benchmark that was created using this dataset, see the Turing Change Point Detection Benchmark repository.

Any work that uses this repository should cite our paper: Van den Burg & Williams - An Evaluation of Change Point Detection Algorithms (2020). You can use the following BibTeX entry:

@article{vandenburg2020evaluation,
        title={An Evaluation of Change Point Detection Algorithms},
        author={{Van den Burg}, G. J. J. and Williams, C. K. I.},
        journal={arXiv preprint arXiv:2003.06222},
        year={2020}
}

Here's a screenshot of what the application looks like during the annotation process:

screenshot of 
AnnotateChange

Some of the features of AnnotateChange include:

  • Admin panel to add/remove datasets, add/remove annotation tasks, add/remove users, and inspect incoming annotations.

  • Basic user management: authentication, email confirmation, forgotten password, automatic log out after inactivity, etc. Users are only allowed to register using an email address from an approved domain.

  • Task assignment of time series to user is done on the fly, ensuring no user ever annotates the same dataset twice, and prioritising datasets that are close to a desired number of annotations.

  • Interactive graph of a time series that supports pan and zoom, support for multidimensional time series.

  • Mandatory "demo" to onboard the user to change point annotation.

  • Backup of annotations to the admin via email.

  • Time series datasets are verified upon upload acccording to a strict schema.

Getting Started

Below are instructions for setting up the application for local development and for running the application with Docker.

Basic

AnnotateChange can be launched quickly for local development as follows:

  1. Clone the repo

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  2. Set up a virtual environment and install dependencies (requires Python 3.7+)

    $ sudo apt-get install -y python3-venv # assuming Ubuntu
    $ pip install wheel
    $ python3 -m venv ./venv
    $ source ./venv/bin/activate
    $ pip install -r requirements.txt
    
  3. Create local development environment file

    $ cp .env.example .env.development
    $ sed -i 's/DB_TYPE=mysql/DB_TYPE=sqlite3/g' .env.development
    

    With DB_TYPE=sqlite3, we don't have to deal with MySQL locally.

  4. Initialize the database (this will be a local app.db file).

    $ ./flask.sh db upgrade
    
  5. Create the admin user account

    $ ./flask.sh admin add --auto-confirm-email
    

    The --auto-confirm-email flag automatically marks the email address of the admin user as confirmed. This is mostly useful in development environments when you don't have a mail address set up yet.

  6. Run the application

    $ ./flask.sh run
    

    This should tell you where its running, probably localhost:5000. You should be able to log in with the admin account you've just created.

  7. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  8. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Docker

To use AnnotateChange locally using Docker, follow the steps below. For a full-fledged installation on a server, see the deployment instructions.

  1. Install docker and docker-compose.

  2. Clone this repository and switch to it:

    $ git clone https://github.com/alan-turing-institute/AnnotateChange
    $ cd AnnotateChange
    
  3. Build the docker image:

    $ docker build -t gjjvdburg/annotatechange .
    
  4. Create the directory for persistent MySQL database storage:

    $ mkdir -p persist/{instance,mysql}
    $ sudo chown :1024 persist/instance
    $ chmod 775 persist/instance
    $ chmod g+s persist/instance
    
  5. Copy the environment variables file:

    $ cp .env.example .env
    

    Some environment variables can be adjusted if needed. For example, when moving to production, you'll need to change the FLASK_ENV variable accordingly. Please also make sure to set a proper SECRET_KEY and AC_MYSQL_PASSWORD (= MYSQL_PASSWORD). You'll also need to configure a mail account so the application can send out emails for registration etc. This is what the variables prefixed with MAIL_ are for. The ADMIN_EMAIL is likely your own email, it is used when the app encounters an error and to send backups of the annotation records. You can limit the email domains users can use with the USER_EMAIL_DOMAINS variable. See the config.py file for more info on the configuration options.

  6. Create a local docker network for communiation between the AnnotateChange app and the MySQL server:

    $ docker network create web
    
  7. Launch the services with docker-compose

    $ docker-compose up
    

    You may need to wait 2 minutes here before the database is initialized. If all goes well, you should be able to point your browser to localhost:7831 and see the landing page of the application. Stop the service before continuing to the next step (by pressing Ctrl+C).

  8. Once you have the app running, you'll want to create an admin account so you can upload datasets, manage tasks and users, and download annotation results. This can be done using the following command:

    $ docker-compose run --entrypoint 'flask admin add --auto-confirm-email' annotatechange
    
  9. As admin, upload ALL demo datasets (included in demo_data) through: Admin Panel -> Add dataset. You should then be able to follow the introduction to the app (available from the landing page).

  10. After completing the instruction, you then will be able to access the user interface ("Home") to annotate your own time series.

Notes

This codebase is provided "as is". If you find any problems, please raise an issue on GitHub.

The code is licensed under the MIT License.

This code was written by Gertjan van den Burg with helpful comments provided by Chris Williams.

Some implementation details

Below are some thoughts that may help make sense of the codebase.

  • AnnotateChange is a web application build on the Flask framework. See this excellent tutorial for an introduction to Flask. The flask.sh shell script loads the appropriate environment variables and runs the application.

  • The application handles user management and is centered around the idea of a "task" which links a particular user to a particular time series to annotate.

  • An admin role is available, and the admin user can manually assign and delete tasks as well as add/delete users, datasets, etc. The admin user is created using the cli (see the Getting Started documentation above).

  • All datasets must adhere to a specific dataset schema (see utils/dataset_schema.json). See the files in [demo_data] for examples, as well as those in TCPD.

  • Annotations are stored in the database using 0-based indexing. Tasks are assigned on the fly when a user requests a time series to annotate (see utils/tasks.py).

  • Users can only begin annotating when they have successfully passed the introduction.

  • Configuration of the app is done through environment variables, see the .env.example file for an example.

  • Docker is used for deployment (see the deployment documentation in docs), and Traefik is used for SSL, etc.

  • The time series graph is plotted using d3.js.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
Official Matplotlib cheat sheets

Official Matplotlib cheat sheets

Matplotlib Developers 6.7k Jan 09, 2023
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
Source Code for 'Practical Python Projects' (video) by Sunil Gupta

Apress Source Code This repository accompanies %Practical Python Projects by Sunil Gupta (Apress, 2021). Download the files as a zip using the green b

Apress 2 Jun 01, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
Course materials and handouts for #100DaysOfCode in Python course

#100DaysOfCode with Python course Course details page: talkpython.fm/100days Course Summary #100DaysOfCode in Python is your perfect companion to take

Talk Python 1.9k Dec 31, 2022
A Python library for setting up projects using tabular data.

A Python library for setting up projects using tabular data. It can create project folders, standardize delimiters, and convert files to CSV from either individual files or a directory.

0 Dec 13, 2022
MkDocs Plugin allowing your visitors to *File > Print > Save as PDF* the entire site.

mkdocs-print-site-plugin MkDocs plugin that adds a page to your site combining all pages, allowing your site visitors to File Print Save as PDF th

Tim Vink 67 Jan 04, 2023
Documentation for GitHub Copilot

NOTE: GitHub Copilot discussions have moved to the Copilot Feedback forum. GitHub Copilot Welcome to the GitHub Copilot user community! In this reposi

GitHub 21.3k Dec 28, 2022
JMESPath is a query language for JSON.

JMESPath JMESPath (pronounced "james path") allows you to declaratively specify how to extract elements from a JSON document. For example, given this

1.7k Dec 31, 2022
Test utility for validating OpenAPI documentation

DRF OpenAPI Tester This is a test utility to validate DRF Test Responses against OpenAPI 2 and 3 schema. It has built-in support for: OpenAPI 2/3 yaml

snok 106 Jan 05, 2023
🏆 A ranked list of awesome python developer tools and libraries. Updated weekly.

Best-of Python Developer Tools 🏆 A ranked list of awesome python developer tools and libraries. Updated weekly. This curated list contains 250 awesom

Machine Learning Tooling 646 Jan 07, 2023
This is the repository that includes the code material for the ESweek 2021 for the Education Class Lecture A3 "Learn to Drive (and Race!) Autonomous Vehicles"

ESweek2021_educationclassA3 This is the repository that includes the code material for the ESweek 2021 for the Education Class Lecture A3 "Learn to Dr

F1TENTH Autonomous Racing Community 29 Dec 06, 2022
More detailed upload statistics for Nicotine+

More Upload Statistics A small plugin for Nicotine+ 3.1+ to create more detailed upload statistics. ⚠ No data previous to enabling this plugin will be

Nick 1 Dec 17, 2021
API spec validator and OpenAPI document generator for Python web frameworks.

API spec validator and OpenAPI document generator for Python web frameworks.

1001001 249 Dec 22, 2022
Plugins for MkDocs.

Plugins for MkDocs and Python Markdown pip install neoteroi-mkdocs This package includes the following plugins and extensions: Name Description Type m

35 Dec 23, 2022
A Collection of Cheatsheets, Books, Questions, and Portfolio For DS/ML Interview Prep

Here are the sections: Data Science Cheatsheets Data Science EBooks Data Science Question Bank Data Science Case Studies Data Science Portfolio Data J

James Le 2.5k Jan 02, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Build AGNOS, the operating system for your comma three

agnos-builder This is the tool to build AGNOS, our Ubuntu based OS. AGNOS runs on the comma three devkit. NOTE: the edk2_tici and agnos-firmare submod

comma.ai 21 Dec 24, 2022
Quilt is a self-organizing data hub for S3

Quilt is a self-organizing data hub Python Quick start, tutorials If you have Python and an S3 bucket, you're ready to create versioned datasets with

Quilt Data 1.2k Dec 30, 2022