Supervised forecasting of sequential data in Python.

Related tags

Deep Learningpysf
Overview

pysf version License

pysf

Supervised forecasting of sequential data in Python.

Intro

Supervised forecasting is the machine learning task of making predictions for sequential data like time series (forecasting) by exploiting independent examples of the same underlying relationship (supervised learning). Learning is flexible enough to incorporate metadata as well as sequential data.

Package features

  • Store and safely manipulate multi-series data and its metadata in a custom data container.
  • Define your own machine learning prediction strategies to operate on this data. Make use of tuning and pipelining objects to build composite prediction strategies. Use the widely-adopted fit/predict workflow throughout.
  • Plug in classical forecasting or supervised learning-based predictors into a framework that adapts them to the supervised forecasting task. Interface with popular machine learning & forecasting frameworks, such as scikit-learn, keras and statsmodels.
  • Empirically estimate multiple predictors' generalisation performance using nested resampling schemes, in a statistically sound manner. Compare predictors to baselines.

Getting started

Documentation

Installation

You can install pysf using the pip package management system. If you have pip installed, simply run

pip install pysf

to install the latest release of pysf.

In addition to the package, you will need the following prerequisites to take advantage of pysf's full functionality.

Prerequisites:

These are also required, but should be part of your Python distribution:

  • abc
  • logging

To use keras for deep learning:

  • Make sure you install keras and at least one backend engine. pysf has been tested against TensorFlow and Theano as backends.
  • If using TensorFlow as a backend, you will typically need to install dask 0.15 or higher.

Contributions

How to cite

Coming soon!

How to contribute

We welcome contributions!

  • You can suggest new features or report bugs by creating a new issue. Please check the list of issues first.
  • If you have made a change for an open issue, please submit a pull request linking to that issue.
  • If you would like to improve the documentation, please go right ahead and submit a pull request.

Contributors

  • Ahmed Guecioueur (@ahmedgc) is the original author of this package.

Copyright and license

Code and documentation copyright 2018 Ahmed Guecioueur. Code released under the BSD-3-Clause License.

Owner
The Alan Turing Institute
The UK's national institute for data science and artificial intelligence.
The Alan Turing Institute
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time".

FastBERT Source code for "FastBERT: a Self-distilling BERT with Adaptive Inference Time". Good News 2021/10/29 - Code: Code of FastPLM is released on

Weijie Liu 584 Jan 02, 2023
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022