Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Overview

Discrete Denoising Flows

This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1].

To give a short overview on the architecture of the implementation:

  • main.py: Starting point and configuration of experiments
  • training.py: Training logic
  • visualization_.py: Functions for plotting samples from trained model
  • model/categorical_prior.py: Prior distribution and splitpriors
  • model/model.py: Overall model object (Discrete Denoising Flow and prior)
  • model/flow.py: Discrete Denoising Flow object
  • model/flow_layers.py: Implementations of
    • Discrete denoising coupling layer (including the conditional permutation operation introduced in the paper)
    • Permutation layer
    • Squeeze layer
  • model/network.py: Implementation of DenseNet and simple MLP
  • data/*: Logic for loading Eight Gaussians, MNIST and Cityscapes datasets

Usage

For each of the following commands, the results are saved in the folder ./results.

8 Gaussians

To test Discrete Denoising Flows with limited computational resources, run the 8 Gaussian toy data experiment. It takes only a few minutes to execute on a 12 GB RAM laptop.

python main.py --dataset='8gaussians' --k_sort=91 --n_hidden_nn=256 --net_epochs=30 --prior_epochs=20

Binary MNIST

For the experiment on Binary MNIST run

python main.py --dataset='mnist' --k_sort=2 --n_hidden_nn=512 --densenet_depth=10 --net_epochs=100 --prior_epochs=30 

For running the experiment without splitpriors, set the flag --with_splitprior False.

Cityscapes

For this experiment, it is necessary to download the Cityscapes data set. For preprocessing, download from this repository the data_to_npy.py and cityscapes.py files that perform the conversion of the original data. This creates three .npy files that should be placed in ./data/cityscapes/preprocessed. Then run

python main.py --dataset='cityscapes' --k_sort=4 --n_hidden_nn=512 --densenet_depth=15 --net_epochs=100 --prior_epochs=30 

Again, for running the experiment without splitpriors, set the flag --with_splitprior False.

Acknowledgements

We gratefully acknowledge the financial support of Robert Bosch GmbH.

References

[1] Alexandra Lindt and Emiel Hoogeboom. "Discrete Denoising Flows." ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (2021).

Owner
Alexandra Lindt
Alexandra Lindt
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Bachelor's Thesis in Computer Science: Privacy-Preserving Federated Learning Applied to Decentralized Data

federated is the source code for the Bachelor's Thesis Privacy-Preserving Federated Learning Applied to Decentralized Data (Spring 2021, NTNU) Federat

Dilawar Mahmood 25 Nov 30, 2022
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

Official PyTorch implementation of PICCOLO: Point-Cloud Centric Omnidirectional Localization (ICCV 2021)

16 Nov 19, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022