A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Overview

Commonsense-Dialogues Dataset

We present Commonsense-Dialogues, a crowdsourced dataset of ~11K dialogues grounded in social contexts involving utilization of commonsense. The social contexts used were sourced from the train split of the SocialIQA dataset, a multiple-choice question-answering based social commonsense reasoning benchmark.

For the collection of the Commonsense-Dialogues dataset, each Turker was presented a social context and asked to write a dialogue of 4-6 turns between two people based on the event(s) described in the context. The Turker was asked to alternate between the roles of an individual referenced in the context and a 3rd party friend. See the following dialogues as examples:

    "1": {  # dialogue_id
        "context": "Sydney met Carson's mother for the first time last week. He liked her.",   # multiple individuals in the context: Sydney and Carson
        "speaker": "Sydney",   # role 1 = Sydney, role 2 = a third-person friend of Sydney
        "turns": [
            "I met Carson's mother last week for the first time.",
            "How was she?",
            "She turned out to be really nice. I like her.",
            "That's good to hear.",
            "It is, especially since Carson and I are getting serious.",
            "Well, at least you'll like your in-law if you guys get married."
        ]
    }

    "2": {
        "context": "Kendall had a party at Jordan's house but was found out to not have asked and just broke in.",
        "speaker": "Kendall",
        "turns": [
            "Did you hear about my party this weekend at Jordan\u2019s house?",
            "I heard it was amazing, but that you broke in.",
            "That was a misunderstanding, I had permission to be there.",
            "Who gave you permission?",
            "I talked to Jordan about it months ago before he left town to go to school, but he forgot to tell his roommates about it.",
            "Ok cool, I hope everything gets resolved."
        ]
    }

The data can be found in the /data directory of this repo. train.json has ~9K dialogues, valid.json and test.json have ~1K dialogues each. Since all the contexts were sourced from the train split of SocialIQA, it is imperative to note that any form of multi-task training and evaluation with Commonsense-Dialogues and SocialIQA must be done with caution to ensure fair and accurate conclusions.

Some statistics about the data are provided below:

Stat Train Valid Test
# of dialogues 9058 1157 1158
average # of turns in a dialogue 5.72 5.72 5.71
average # of words in a turn 12.4 12.4 12.2
# of distinct SocialIQA contexts used 3672 483 473
average # of dialogues for a SocialIQA context 2.46 2.395 2.45

Security

See CONTRIBUTING for more information.

License

This repository is licensed under the CC-BY-NC 4.0 License.

Citation

If you use this dataset, please cite the following paper:

@inproceedings{zhou-etal-2021-commonsense,
    title = "Commonsense-Focused Dialogues for Response Generation: An Empirical Study",
    author = "Zhou, Pei  and
      Gopalakrishnan, Karthik  and
      Hedayatnia, Behnam  and
      Kim, Seokhwan  and
      Pujara, Jay  and
      Ren, Xiang  and
      Liu, Yang  and
      Hakkani-Tur, Dilek",
    booktitle = "Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue",
    year = "2021",
    address = "Singapore and Online",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2109.06427"
}

Note that the paper uses newly collected dialogues as well as those that were filtered from existing datasets. This repo contains our newly collected dialogues alone.

Owner
Alexa
Alexa
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS implementation in Python Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS

Hamed Baziyad 8 Dec 10, 2022
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
BeautyNet is an AI powered model which can tell you whether you're beautiful or not.

BeautyNet BeautyNet is an AI powered model which can tell you whether you're beautiful or not. Download Dataset from here:https://www.kaggle.com/gpios

Ansh Gupta 0 May 06, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
We have built a Voice based Personal Assistant for people to access files hands free in their device using natural language processing.

Voice Based Personal Assistant We have built a Voice based Personal Assistant for people to access files hands free in their device using natural lang

Rushabh 2 Nov 13, 2021
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 05, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022