exponential adaptive pooling for PyTorch

Related tags

Deep LearningadaPool
Overview

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling

supported versions Library GitHub license


Abstract

Pooling layers are essential building blocks of Convolutional Neural Networks (CNNs) that reduce computational overhead and increase the receptive fields of proceeding convolutional operations. They aim to produce downsampled volumes that closely resemble the input volume while, ideally, also being computationally and memory efficient. It is a challenge to meet both requirements jointly. To this end, we propose an adaptive and exponentially weighted pooling method named adaPool. Our proposed method uses a parameterized fusion of two sets of pooling kernels that are based on the exponent of the Dice-Sørensen coefficient and the exponential maximum, respectively. A key property of adaPool is its bidirectional nature. In contrast to common pooling methods, weights can be used to upsample a downsampled activation map. We term this method adaUnPool. We demonstrate how adaPool improves the preservation of detail through a range of tasks including image and video classification and object detection. We then evaluate adaUnPool on image and video frame super-resolution and frame interpolation tasks. For benchmarking, we introduce Inter4K, a novel high-quality, high frame-rate video dataset. Our combined experiments demonstrate that adaPool systematically achieves better results across tasks and backbone architectures, while introducing a minor additional computational and memory overhead.


[arXiv preprint -- coming soon]

Original
adaPool

Dependencies

All parts of the code assume that torch is of version 1.4 or higher. There might be instability issues on previous versions.

This work relies on the previous repo for exponential maximum pooling (alexandrosstergiou/SoftPool). Before opening an issue please do have a look at that repository as common problems in running or installation have been addressed.

! Disclaimer: This repository is heavily structurally influenced on Ziteng Gao's LIP repo https://github.com/sebgao/LIP

Installation

You can build the repo through the following commands:

$ git clone https://github.com/alexandrosstergiou/adaPool.git
$ cd adaPool-master/pytorch
$ make install
--- (optional) ---
$ make test

Usage

You can load any of the 1D, 2D or 3D variants after the installation with:

# Ensure that you import `torch` first!
import torch
import adapool_cuda

# For function calls
from adaPool import adapool1d, adapool2d, adapool3d, adaunpool
from adaPool import edscwpool1d, edscwpool2d, edscwpool3d
from adaPool import empool1d, empool2d, empool3d
from adaPool import idwpool1d, idwpool2d, idwpool3d

# For class calls
from adaPool import AdaPool1d, AdaPool2d, AdaPool3d
from adaPool import EDSCWPool1d, EDSCWPool2d, EDSCWPool3d
from adaPool import EMPool1d, EMPool2d, EMPool3d
from adaPool import IDWPool1d, IDWPool2d, IDWPool3d
  • (ada/edscw/em/idw)pool<x>d: Are functional interfaces for each of the respective pooling methods.
  • (Ada/Edscw/Em/Idw)Pool<x>d: Are the class version to create objects that can be referenced in the code.

Citation

@article{stergiou2021adapool,
  title={AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling},
  author={Stergiou, Alexandros and Poppe, Ronald},
  journal={arXiv preprint},
  year={2021}}

Licence

MIT

You might also like...
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

[CVPR 2021] Official PyTorch Implementation for
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch
An implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

Comments
  • Installation issue on Google Colab

    Installation issue on Google Colab

    Hi, Thanks for providing a Cuda optimized implementation. While building the lib I encountered an issue with "inf" at limits.cuh.

    CUDA/limits.cuh(119): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(120): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(128): error: identifier "inf" is undefined
    
    CUDA/limits.cuh(129): error: identifier "inf" is undefined
    
    4 errors detected in the compilation of "CUDA/adapool_cuda_kernel.cu".
    error: command '/usr/local/cuda/bin/nvcc' failed with exit status 1
    Makefile:2: recipe for target 'install' failed
    make: *** [install] Error 1
    

    The following notebook provides more details with environment informations: https://colab.research.google.com/drive/1T6Nxe2qbjKxXzo2IimFMYBn52qbthlZB?usp=sharing

    opened by okbalefthanded 2
  • Solution: Unresolved extern function '_Z3powdi'”

    Solution: Unresolved extern function '_Z3powdi'”

    cuda11. 0

    When I tried to build your project on win10, I encountered the following problems: “ptxas fatal : Unresolved extern function '_Z3powdi'”

    Reason: Wrong use of pow function in Cu code Solution: for example, pow (x, 2) can be changed to X * X

    opened by Culturenotes 1
  • Does AdaPool2d's beta require fixed image size?

    Does AdaPool2d's beta require fixed image size?

    I'm currently running AdaPool2d as a replacement of MaxPool2d in Resnet's stem similar on how you did it in SoftPool. However, I keep on getting an assertionError in line 1325 as shown below:

    assert isinstance(beta, tuple) or torch.is_tensor(beta), 'Agument `beta` can only be initialized with Tuple or Tensor type objects and should correspond to size (oH, oW)'
    

    Does this mean beta requires a fixed image size, e.g. (224,244)? Or is there a way to make it adaptive across varying image size (e.g. object detection)?

    opened by johnanthonyjose 1
  • The version of pytorch and how to deal with `nan_to_num` function in lower versions

    The version of pytorch and how to deal with `nan_to_num` function in lower versions

    Thank you for this amazing project. I saw it from SoftPool. After installing it, make test, but I got AttributeError: module 'torch' has no attribute 'nan_to_num', after I checked, this function used in idea.py was introduced in Pytorch 1.8.0, so the torch version in the README may need to be updated, or is there an easy way to be compatible with lower versions?

    opened by MaxChanger 1
Releases(v0.2)
Owner
Alexandros Stergiou
Computer Vision and Machine Learning Researcher
Alexandros Stergiou
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
Official PyTorch code for the paper: "Point-Based Modeling of Human Clothing" (ICCV 2021)

Point-Based Modeling of Human Clothing Paper | Project page | Video This is an official PyTorch code repository of the paper "Point-Based Modeling of

Visual Understanding Lab @ Samsung AI Center Moscow 64 Nov 22, 2022
Reinforcement Learning for Portfolio Management

qtrader Reinforcement Learning for Portfolio Management Why Reinforcement Learning? Learns the optimal action, rather than models the market. Adaptive

Angelos Filos 406 Jan 01, 2023
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Source code for Fathony, Sahu, Willmott, & Kolter, "Multiplicative Filter Networks", ICLR 2021.

Multiplicative Filter Networks This repository contains a PyTorch MFN implementation and code to perform & reproduce experiments from the ICLR 2021 pa

Bosch Research 66 Jan 04, 2023
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023