The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Overview

Likelihood-Free Inference in State-Space Models with Unknown Dynamics

This package contains the codes required to run the experiments in the paper. The simulators used for the State-Space Models in the experiments are implemented based on Engine for Likelihood-free Inference (ELFI) models.

Installation

We recommend using an Anaconda environment. To create and activate the conda environment with all dependencies installed, run:

conda create -c conda-forge --name env --file lfi-requirements.txt
conda activate env
pip install -e .
pip install sbi blitz-bayesian-pytorch stable_baselines3

For the GP-SSM and PR-SSM methods, we recommend creating a separate environment, in which one should install tensorflow, and then clone the 'custom_multiouput' branch of the GPflow from https://github.com/ialong/GPflow. Once GPflow is installed, one should clone GPt from https://github.com/ialong/GPt and execute 'experiments/run_gpssms.py', the code will complete 30 repletions of experiments with tractable likelihoods.

Running the experiments

The experiment scripts can be found in the 'experiments/' folder. To run the experiments on one of the considered SSM, one should run the 'run_experiment.py' script with the following arguments (options are in the parentheses): --sim ('lgssm', 'toy', 'sv', 'umap', 'gaze'), --meth ('bnn', 'qehvi', 'blr', 'SNPE', 'SNLE', 'SNRE'), --seed (any seed number), --budget (available simulation budget for each new state), --tasks (number of tasks considered/ moving window size for LMC-BNN, LMC-qEHVI and LMC-BLR methods). For instance:

python3 experiments/run_experiment.py --sim=lgssm --meth=bolfi --seed=0 --budget=2 --tasks=2

The results will be saved in the corresponding folders 'experiments/[sim]/[meth]-w[tasks]-s[budget]/'. To build plots and output the results, one should run 'collect_plots.py' script with specified arguments: --type ('inf' in case of evaluating state inference quality or 'traj' in case of evaluating the generated trajectories), --tasks (the number of tasks used by the methods). For example:

python3 experiments/collect_results.py --type=inf --tasks=2

The plots with experiment results will be stored in 'experiments/plots'.

Implementing custom simulators

The simulators for all experiments can be found in elfi/examples. Example implementations used in the paper are found in gaze_selection.py, umap_tasks.py, LGSSM.py (LG), dynamic_toy_model.py (NN), and stochastic_volatility.py (SV). To create a new SSM, implement a new class that inherits from elfi.DynamicProcess with custom generating function for observations, create_model(), and update_dynamic().

The code for all methods can be found in 'elfi/methods/dynamic_parameter_inference.py' and 'elfi/methods/bo/mogp.py'.

Citation


Owner
Alex Aushev
Alex Aushev
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
ByteTrack with ReID module following the paradigm of FairMOT, tracking strategy is borrowed from FairMOT/JDE.

ByteTrack_ReID ByteTrack is the SOTA tracker in MOT benchmarks with strong detector YOLOX and a simple association strategy only based on motion infor

Han GuangXin 46 Dec 29, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
Hepsiburada - Hepsiburada Urun Bilgisi Cekme

Hepsiburada Urun Bilgisi Cekme from hepsiburada import Marka nike = Marka("nike"

Ilker Manap 8 Oct 26, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

1 Dec 30, 2021
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations

Trans-Encoder: Unsupervised sentence-pair modelling through self- and mutual-distillations Code repo for paper Trans-Encoder: Unsupervised sentence-pa

Amazon 101 Dec 29, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022