The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

Overview

R2D2

This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling". The current repo is refactored from the original version used in the paper. If meet any issue, please feel free to feedback.

Data

Train

Multi-GPUs

For training from scratch in a single machine with multiple GPUs, please follow scripts below:

CORPUS_PATH=
OUTPUT_PATH=
NODE_NUM=

python -m torch.distributed.launch \
    --nproc_per_node $NODE_NUM R2D2_trainer.py --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 60 \
    --output_dir $OUTPUT_PATH \
    --window_size 4 \
    --input_type txt

Single-GPU

CORPUS_PATH=
OUTPUT_PATH=

python trainer.R2D2_trainer \
    --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 10 \
    --output_dir $OUTPUT_PATH \
    --input_type txt

Evaluation

Evaluating the bidirectional language model task.

CORPUS_PATH=path to training corpus
VOCAB_DIR=directory of vocab.txt
MODEL_PATH=path to model.bin
CONFIG_PATH=path to config.json

python lm_eval_buckets.py \
    --model_name R2D2 \
    --dataset test \
    --config_path CONFIG_PATH \
    --model_path MODEL_PATH \
    --vocab_dir VOCAB_DIR \
    --corpus_path CORPUS_PATH

For evaluating F1 score on constituency trees, please refer to https://github.com/harvardnlp/compound-pcfg/blob/master/compare_trees.py

Evaluating compatibility with dependency trees: Download WSJ dataset and convert to dependency trees by Stanford CoreNLP(https://stanfordnlp.github.io/CoreNLP/). As WSJ is not a free dataset, it's not included in our project. Please refer to the files in data/predict_trees for detail format of tree induced.

python eval_tree.py \
    --pred_tree_path path_to_tree_induced \
    --ground_truth_path path_to_dependency_trees
    --vocab_dir VOCAB_DIR

On-going work

  1. Re-implement whole model to increase GPU utility ratio.
  2. Pre-train on large corpus

Contact

[email protected] and [email protected]

You might also like...
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official PyTorch code for CVPR 2020 paper
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Official Code for ICML 2021 paper
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

This is the official code of our paper
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Official code for paper
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

Comments
  • question about perplexity measures with R2D2 original model

    question about perplexity measures with R2D2 original model

    I have a few minor questions about the R2D2 PPPL measurements and their implementation.

    Q1: In the paper, it says PPPL is defined as, exp(-(1/N) sum(L(S)))

    This makes sense. But in the evaluation code here,

                    log_p_sums, b_c, pppl = self.predictor(ids, self.bucket_size, self.get_bucket_id)
                    PPPL += (pppl - PPPL) / counter
                    print(PPPL, file=f_out)
    

    We are outputting PPPL without taking the exponential. I assume the numbers in the paper are actually 2^{PPPL} here right? assuming we are using 2 as the base. I simply load a random BERT model, PPPL outputted here is around 10.4, 2^{10.4} ~= 1351, which is about right.

    Q2: For pretraining the BERT model baseline, are you guys loading the same dataset as in the link below? or loading some default huggingface dataset? https://github.com/alipay/StructuredLM_RTDT/tree/r2d2/data/en_wiki

    Sorry to throw random questions at you, but this would be very helpful for me to build something on top of this.

    Thanks.

    opened by frankaging 4
  • an potential issue found for the nn.MultiheadAttention module setup

    an potential issue found for the nn.MultiheadAttention module setup

    Hi Authors!

    Thanks for sharing this repo, I enjoyed when reading your paper, and I am working on a related project. As I am going through the code, I found one potential issue with the current setup. I will (1) explain the issue, and (2) provide a simple test case that I ran on my end. Please help with verifying.

    Issue:

    • nn.MultiheadAttention module inside the BinaryEncoder module is set with batch_first=True, however it seems like we are passing in Q, K, V matrics without the first dimension being the batch dimension.

    Code Analysis: In r2d2.py, it is calling the encoder here, as the following

            tasks_embedding = self.embedding(task_ids)  # (?, 2, dim)
            input_embedding = torch.cat([tasks_embedding, tensor_batch], dim=1)  # (?, 4, dim)
            outputs = self.tree_encoder(input_embedding.transpose(0, 1)).transpose(0, 1)  # (? * batch_size, 4, dim)
    

    We can see that input_embedding is definitely with the first dimension being the batch_size as it concat with the embeddings from the nn.embedding module. Before we call self.tree_encoder, .transpose(0, 1) makes the the second dimension of the input being the batch_size instead. Specifically, the first dimension, in this case, is always 4.

    Testing Done: I simply add some logs inside TreeEncoderLayer as,

        def forward(self, src, src_mask=None, pos_ids=None):
            """
            :param src: concatenation of task embeddings and representation for left and right.
                        src shape: (task_embeddings + left + right, batch_size, dim)
            :param src_mask:
            :param pos_ids:
            :return:
            """
            if len(pos_ids.shape) == 1:
                sz = src.shape[0]  # sz: batch_size
                pos_ids = pos_ids.unsqueeze(0).expand(sz, -1)  # (3, batch_size)
            position_embedding = self.position_embedding(pos_ids)
            print("pre: ", src.shape)
            print("pos_emb: ", position_embedding.shape)
            output = self.self_attn(src + position_embedding, src + position_embedding, src, attn_mask=src_mask)
            src2 = output[0]
            attn_weights = output[1]
            print("attn_w: ", attn_weights.shape)
            src = src + self.dropout1(src2)
            src = self.norm1(src)
            src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
            src = src + self.dropout2(src2)
            src = self.norm2(src)
            print("post: ", src.shape)
            return src
    

    And this is what I get,

    pre:  torch.Size([4, 8, 768])
    pos_emb:  torch.Size([4, 8, 768])
    attn_w:  torch.Size([4, 8, 8])
    post:  torch.Size([4, 8, 768])
    

    Summary: It seems like for r2d2.py, the self-attention is not on those 4 tokens (2 special prefix + left and right children embedding), but it is on the full collection of candidates with their children.

    I saw this issue is not presented in r2d2_cuda.py as,

                outputs = self.tree_encoder(
                    input_embedding)  # (? * batch_size, 4, dim)
    

    This is great. I have not checked the rest of the code for r2d2_cuda.py though. With this, I am wondering are the numbers from either of your papers need to be updated with this potential issue? Either way, I am not blocked by this potential issue, and I was inspired quite a lot by your codebase. Thanks!

    opened by frankaging 3
  • 关于backbone的疑问。

    关于backbone的疑问。

    作者你好,非常感谢你的贡献,我觉得你的工作很有意义,感觉是一个新方向。 有2个疑问需要请教一下:

    1. encoder 使用 transformer,基于注意力的模型,其能力很大部门来源于能通过注意力机制编码出上下文中有用的信息,但这里每次输入只有 [SUM], [CLS], [token1], [token2] 共4个,上下文短,个人感觉 transformer 可能不是最合适的,有试过其它编码器吗?比如gru,或者textCNN?
    2. 有办法并行编码吗?虽然 transformer 的时间复杂度高,但是GPU并行编码很好解决了训练时间长的问题。从论文的E图看 CKY 树编码,一个 token 要分别编码几次,这样会不会导致训练时间实际更长?如,3层 R2D2 比 12 层 transformer 训练数据时间更长? 谢谢作者。
    opened by wulaoshi 1
Releases(fast-R2D2)
Owner
Alipay
Ant Group Open Source
Alipay
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
[SIGGRAPH 2021 Asia] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning

DeepVecFont This is the official Pytorch implementation of the paper: Yizhi Wang and Zhouhui Lian. DeepVecFont: Synthesizing High-quality Vector Fonts

Yizhi Wang 146 Dec 18, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022