git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Overview

Commonsense Knowledge Base Completion with Structural and Semantic Context

Code for the paper Commonsense Knowledge Base Completion with Structural and Semantic Context.

Bibtex

@article{malaviya2020commonsense,
  title={Commonsense Knowledge Base Completion with Structural and Semantic Context},
  author={Malaviya, Chaitanya and Bhagavatula, Chandra and Bosselut, Antoine and Choi, Yejin},
  journal={Proceedings of the 34th AAAI Conference on Artificial Intelligence},
  year={2020}
}

Requirements

  • PyTorch
  • Run pip install -r requirements.txt to install the required packages.

Dataset

The ATOMIC dataset used in this paper is available here and the ConceptNet graph is available here. For convenience, both the pre-processed version of ATOMIC and ConceptNet used in the experiments are provided at this link.

Note: The ATOMIC dataset was pre-processed to canonicalize person references and remove punctuations (described in preprocess_atomic.py.

Note: The original evaluation sets provided in the ConceptNet dataset contain correct as well as incorrect tuples for evaluating binary classification accuracy. valid.txt in data/conceptnet is the concatenation of the correct tuples from the two development sets provided in the original dataset while test.txt is the set of correct tuples from the original test set.

Training

To train a model, run the following command:

python -u src/run_kbc_subgraph.py --dataset conceptnet --evaluate-every 10 --n-layers 2 --graph-batch-size 60000 --sim_relations --bert_concat

This trains the model and saves the model under the saved_models directory.

Language Model Fine-tuning

In this work, we use representations from a BERT model fine-tuned to the language of the nodes in the knowledge graph.

The script to fine-tune BERT as a language model on the two knowledge graphs is present in the lm_finetuning/ directory. For example, here is a command to fine-tune BERT as a language model on ConceptNet:

python lm_finetuning/simple_lm_finetuning.py --train_corpus {CONCEPTNET_TRAIN_CORPUS} --bert_model bert-large-uncased --output_dir {OUTPUT_DIR}

Pre-Trained Models

We provide the fine-tuned BERT models and pre-computed BERT embeddings for both ConceptNet and ATOMIC at this link. If you unzip the downloaded file in the root directory of the repository, the training script will load the embeddings.

We also provide the pre-trained KB completion models for both datasets for ease of use. Link to Conceptnet model and ATOMIC model.

Evaluation

To evaluate a trained model, and get predictions, provide the model path to the --load_model argument and use the --eval_only argument. For example, to evaluate the pre-trained ConceptNet model provided above, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset conceptnet --sim_relations --bert_concat --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

This will load the pre-trained model, and evaluate it on the validation and test set. The predictions are saved to ./topk_results.json.

Similarly, to evaluate the trained model on ATOMIC, use the following command:

CUDA_VISIBLE_DEVICES={GPU_ID} python src/run_kbc_subgraph.py --dataset atomic --sim_relations --use_bias --load_model {PATH_TO_PRETRAINED_MODEL} --eval_only --write_results

Please email me at [email protected] for any questions or comments.

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Global Filter Networks for Image Classification

Global Filter Networks for Image Classification Created by Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, Jie Zhou This repository contains PyTorch

Yongming Rao 273 Dec 26, 2022
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 본 repo 는 mAy-I Inc. 팀으로 참가한 2021 인공지능 온라인 경진대회 중 [이미지] 운전 사고 예방을 위한 운전자 부주의 행동 검출 모델] 태스크 수행을 위한 레포지토리입니다. mAy-I 는 과학기술정보통신부가 주최하

Junhyuk Park 9 Dec 01, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
✨风纪委员会自动投票脚本,利用Github Action帮你进行裁决操作(为了让其他风纪委员有案件可判,本程序从中午12点才开始运行,有需要请自己修改运行时间)

风纪委员会自动投票 本脚本通过使用Github Action来实现B站风纪委员的自动投票功能,喜欢请给我点个STAR吧! 如果你不是风纪委员,在符合风纪委员申请条件的情况下,本脚本会自动帮你申请 投票时间是早上八点,如果有需要请自行修改.github/workflows/Judge.yml中的时间,

Pesy Wu 25 Feb 17, 2021
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
FreeSOLO for unsupervised instance segmentation, CVPR 2022

FreeSOLO: Learning to Segment Objects without Annotations This project hosts the code for implementing the FreeSOLO algorithm for unsupervised instanc

NVIDIA Research Projects 253 Jan 02, 2023
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021