Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

Overview

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece is a "tokenizer" for reducing entity vocabulary size in knowledge graphs. Instead of shallow embedding every node to a vector, we first "tokenize" each node by K anchor nodes and M relation types in its relational context. Then, the resulting hash sequence is encoded through any injective function, e.g., MLP or Transformer.

Similar to Byte-Pair Encoding and WordPiece tokenizers commonly used in NLP, NodePiece can tokenize unseen nodes attached to the seen graph using the same anchor and relation vocabulary, which allows NodePiece to work out-of-the-box in the inductive settings using all the well-known scoring functions in the classical KG completion (like TransE or RotatE). NodePiece also works with GNNs (we tested on node classification, but not limited to it, of course).

NodePiece source code

The repo contains the code and experimental setups for reproducibility studies.

Each experiment resides in the respective folder:

  • LP_RP - link prediction and relation prediction
  • NC - node classification
  • OOS_LP - out-of-sample link prediction

The repo is based on Python 3.8. wandb is an optional requirement in case you have an existing account there and would like to track experimental results. If you have a wandb account, the repo assumes you've performed

wandb login <your_api_key>

Using a GPU is recommended.

First, run a script which will download all the necessary pre-processed data and datasets. It takes approximately 1 GB.

sh download_data.sh

We packed the pre-processed data for faster experimenting with the repo. Note that there are two NodePiece tokenization modes (-tkn_mode [option]): path and bfs:

  • path is an old tokenization strategy (based on finding shortest paths between each node and all anchors) under which we performed the experiments and packed the data for reproducibility;
  • bfs is a new strategy (based on iterative expansion of node's neighborhood until a desired number of anchors is reached) which is 5-50x faster and takes 4-5x less space depending on the KG. Currently, works for transductive LP/RP tasks;

Pre-processing times tested on M1 MacBook Pro / 8 GB:

mode FB15k-237 / vocab size WN18RR / vocab size YAGO 3-10 / vocab size
path 2 min / 28 MB 5 min / 140 MB ~ 5 hours / 240 MB
bfs 8 sec / 7.5 MB 30 sec / 20 MB 4.5 min / 40 MB

CoDEx-Large and YAGO path pre-processing is better run on a server with 16-32 GB RAM and might take 2-5 hours depending on the chosen number of anchors.

NB: we seek to further improve the algorithms to make the tokenization process even faster than the bfs strategy.

Second, install the dependencies in requirements.txt. Note that when installing Torch-Geometric you might want to use pre-compiled binaries for a certain version of python and torch. Check the manual here.

In the link prediction tasks, all the necessary datasets will be downloaded upon first script execution.

Link Prediction

The link prediction (LP) and relation prediction (RP) tasks use models, datasets, and evaluation protocols from PyKEEN.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py.

  • Run the fb15k-237 experiment
python run_lp.py -loop lcwa -loss bce -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -sample_rels 15 -smoothing 0.4 -epochs 401
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -margin 15 -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -pool cat -embedding 200 -negs 20 -subbatch 2000 -sample_rels 4 -epochs 601
  • Run the codex-l experiment
python run_lp.py -loop lcwa -loss bce -b 256 -data codex_l -anchors 7000 -sp 100 -lr 0.0005 -ft_maxp 20 -pool cat -embedding 200 -subbatch 10000 -sample_rels 6 -smoothing 0.3 -epochs 120
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -margin 50 -b 512 -data yago -anchors 10000 -sp 100 -lr 0.00025 -ft_maxp 20 -pool cat -embedding 200 -subbatch 2000 -sample_rels 5 -negs 10 -epochs 601

Test evaluation reproducibility patch

PyKEEN 1.0.5 used in this repo has been identified to have issues at the filtering stage when evaluating on the test set. In order to fully reproduce the reported test set numbers for transductive LP/RP experiments from the paper and resolve this issue, please apply the patch from the lp_rp/patch folder:

  1. Locate pykeen in your environment installation:
<path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen
  1. Replace the evaluation/evaluator.py with the one from the patch folder
cp ./lp_rp/patch/evaluator.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/evaluation/
  1. Replace the stoppers/early_stopping.py with the one from the patch folder
cp ./lp_rp/patch/early_stopping.py <path_to_env>/lib/python3.<NUMBER>/site-packages/pykeen/stoppers/

This won't be needed once we port the codebase to newest versions of PyKEEN (1.4.0+) where this was fixed

Relation Prediction

The setup is very similar to that of link prediction (LP) but we predict relations (h,?,t) now.

Navigate to the lp_rp folder: cd lp_rp.

The list of CLI params can be found in run_lp.py

  • Run the fb15k-237 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data fb15k237 -anchors 1000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 15 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 15 -epochs 21 --rel-prediction True
  • Run the wn18rr experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data wn18rr -anchors 500 -sp 100 -lr 0.0005 -ft_maxp 50 -margin 12 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 4 -epochs 151 --rel-prediction True
  • Run the yago 3-10 experiment
python run_lp.py -loop slcwa -loss nssal -b 512 -data yago -anchors 10000 -sp 100 -lr 0.0005 -ft_maxp 20 -margin 25 -subbatch 2000 -pool cat -embedding 200 -negs 20 -sample_rels 5 -epochs 7 --rel-prediction True

Node Classification

Navigate to the nc folder: cd nc .

The list of CLI params can be found in run_nc.py

If you have a GPU, use DEVICE cuda otherwise DEVICE cpu.

The run on 5% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.05 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

The run on 10% of labeled data:

python run_nc.py DATASET wd50k MAX_QPAIRS 3 STATEMENT_LEN 3 LABEL_SMOOTHING 0.1 EVAL_EVERY 5 DEVICE cpu WANDB False EPOCHS 4001 GCN_HID_DROP2 0.5 GCN_HID_DROP 0.5 GCN_FEAT_DROP 0.5 EMBEDDING_DIM 100 GCN_GCN_DIM 100 LEARNING_RATE 0.001 GCN_ATTENTION True GCN_GCN_DROP 0.3 GCN_ATTENTION_DROP 0.3 GCN_LAYERS 3 DS_TYPE transductive MODEL_NAME stare TR_RATIO 0.1 USE_FEATURES False TOKENIZE True NUM_ANCHORS 50 MAX_PATHS 10 USE_TEST True

Out-of-sample Link Prediction

Navigate to the oos_lp folder: cd oos_lp/src.

The list of CLI params can be found in main.py.

  • Run the oos fb15k-237 experiment
python main.py -dataset FB15k-237 -model_name DM_NP_fb -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 1000 -sample_rels 15
  • Run the oos yago3-10 experiment
python main.py -dataset YAGO3-10 -model_name DM_NP_yago -ne 41 -lr 0.0005 -emb_dim 200 -batch_size 256 -simulated_batch_size 256 -save_each 100 -tokenize True -opt adam -pool trf -use_custom_reg False -reg_lambda 0.0 -loss_fc spl -margin 15 -neg_ratio 5 -wandb False -eval_every 20 -anchors 10000 -sample_rels 5

Citation

If you find this work useful, please consider citing the paper:

@misc{galkin2021nodepiece,
    title={NodePiece: Compositional and Parameter-Efficient Representations of Large Knowledge Graphs},
    author={Mikhail Galkin and Jiapeng Wu and Etienne Denis and William L. Hamilton},
    year={2021},
    eprint={2106.12144},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Michael Galkin
Michael Galkin
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
An implementation of a discriminant function over a normal distribution to help classify datasets.

CS4044D Machine Learning Assignment 1 By Dev Sony, B180297CS The question, report and source code can be found here. Github Repo Solution 1 Based on t

Dev Sony 6 Nov 09, 2021
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Code for the paper "Reinforcement Learning as One Big Sequence Modeling Problem"

Trajectory Transformer Code release for Reinforcement Learning as One Big Sequence Modeling Problem. Installation All python dependencies are in envir

Michael Janner 269 Jan 05, 2023
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Namish Khanna 40 Oct 11, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

35 Jan 03, 2023
Improving Non-autoregressive Generation with Mixup Training

MIST Training MIST TRAIN_FILE=/your/path/to/train.json VALID_FILE=/your/path/to/valid.json OUTPUT_DIR=/your/path/to/save_checkpoints CACHE_DIR=/your/p

7 Nov 22, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022