This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Overview

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection

This is a PyTorch implementation of the LipForensics paper.

This is an Unofficially implemented codes with some Official code. I made this repo to use more conveniently.

If you want to see the Original code, You can cite this link

You should try the preprocessing, which steps are firstly getting landmarks and then cropping mouth.

Setup

Install packages

pip install -r requirements.txt

Note: we used Python version 3.8 to test this code.

Prepare data

  1. Follow the links below to download the datasets (you will be asked to fill out some forms before downloading):

  2. Extract the frames (e.g. using code in the FaceForensics++ repo.) The filenames of the frames should be as follows: 0000.png, 0001.png, ....

  3. Detect the faces and compute 68 face landmarks. For example, you can use RetinaFace and FAN for good results.

  4. Place face frames and corresponding landmarks into the appropriate directories:

    • For FaceForensics++, FaceShifter, and DeeperForensics, frames for a given video should be placed in data/datasets/Forensics/{dataset_name}/{compression}/images/{video}, where dataset_name is RealFF (real frames from FF++), Deepfakes, FaceSwap, Face2Face, NeuralTextures, FaceShifter, or DeeperForensics. dataset_name is c0, c23, or c40, corresponding to no compression, low compression, and high compression, respectively. video is the video name and should be numbered as follows: 000, 001, .... For example, the frame 0102 of real video 067 at c23 compression is found in data/datasets/Forensics/RealFF/c23/images/067/0102.png
    • For CelebDF-v2, frames for a given video should be placed in data/datasets/CelebDF/{dataset_name}/images/{video} where dataset_name is RealCelebDF, which should include all real videos from the test set, or FakeCelebDF, which should include all fake videos from the test set.
    • For DFDC, frames for a given video should be placed in data/datasets/DFDC/images (both real and fake). The video names from the test set we used in our experiments are given in data/datasets/DFDC/dfdc_all_vids.txt.

    The corresponding computed landmarks for each frame should be placed in .npy format in the directories defined by replacing images with landmarks above (e.g. for video "000", the .npy files for each frame should be placed in data/datasets/Forensics/RealFF/c23/landmarks/000).

  5. To crop the mouth region from each frame for all datasets, run

    python preprocessing/crop_mouths.py --dataset all

    This will write the mouth images into the corresponding cropped_mouths directory.

Evaluate

  • Cross-dataset generalisation (Table 2 in paper):
    1. Download the pretrained model and place into models/weights. This model has been trained on FaceForensics++ (Deepfakes, FaceSwap, Face2Face, and NeuralTextures) and is the one used to get the LipForensics video-level AUC results in Table 2 of the paper, reproduced below:

      CelebDF-v2 DFDC FaceShifter DeeperForensics
      82.4% 73.5% 97.1% 97.6%
    2. To evaluate on e.g. FaceShifter, run

      python evaluate.py --dataset FaceShifter --weights_forgery ./models/weights/lipforensics_ff.pth

Citation

If you find this repo useful for your research, please consider citing the following:

@inproceedings{haliassos2021lips,
  title={Lips Don't Lie: A Generalisable and Robust Approach To Face Forgery Detection},
  author={Haliassos, Alexandros and Vougioukas, Konstantinos and Petridis, Stavros and Pantic, Maja},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5039--5049},
  year={2021}
}
Owner
Minha Kim
@DASH-Lab on Sungkyunkwan University in Korea
Minha Kim
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
https://sites.google.com/cornell.edu/recsys2021tutorial

Counterfactual Learning and Evaluation for Recommender Systems (RecSys'21 Tutorial) Materials for "Counterfactual Learning and Evaluation for Recommen

yuta-saito 45 Nov 10, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022