Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Overview

Deep Learning Specialization on Coursera (offered by deeplearning.ai)

Programming assignments and quizzes from all courses in the Coursera Deep Learning specialization offered by deeplearning.ai.

Instructor: Andrew Ng

Notes

For detailed interview-ready notes on all courses in the Coursera Deep Learning specialization, refer www.aman.ai.

Setup

Run setup.sh to (i) download a pre-trained VGG-19 dataset and (ii) extract the zip'd pre-trained models and datasets that are needed for all the assignments.

Credits

This repo contains my work for this specialization. The code base, quiz questions and diagrams are taken from the Deep Learning Specialization on Coursera, unless specified otherwise.

2021 Version

This specialization was updated in April 2021 to include developments in deep learning and programming frameworks, with the biggest change being shifting from TensorFlow 1 to TensorFlow 2. This repo has been updated accordingly as well.

Programming Assignments

Course 1: Neural Networks and Deep Learning

Course 2: Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

Course 3: Structuring Machine Learning Projects

  • There are no programming assignments for this course. But this course comes with very interesting case study quizzes (below).

Course 4: Convolutional Neural Networks

Course 5: Sequence Models

Quiz Solutions

Course 1: Neural Networks and Deep Learning

  • Week 1 Quiz - Introduction to deep learning: Text | PDF
  • Week 2 Quiz - Neural Network Basics: Text | PDF
  • Week 3 Quiz - Shallow Neural Networks: Text | PDF
  • Week 4 Quiz - Key concepts on Deep Neural Networks: Text | PDF

Course 2: Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

  • Week 1 Quiz - Practical aspects of deep learning: Text | PDF
  • Week 2 Quiz - Optimization algorithms: Text | PDF
  • Week 3 Quiz - Hyperparameter tuning, Batch Normalization, Programming Frameworks: Text | PDF

Course 3: Structuring Machine Learning Projects

  • Week 1 Quiz - Bird recognition in the city of Peacetopia (case study): Text | PDF
  • Week 2 Quiz - Autonomous driving (case study): Text | PDF

Course 4: Convolutional Neural Networks

  • Week 1 Quiz - The basics of ConvNets: Text | PDF
  • Week 2 Quiz - Deep convolutional models: Text | PDF
  • Week 3 Quiz - Detection algorithms: Text | PDF
  • Week 4 Quiz - Special applications: Face recognition & Neural style transfer: Text | PDF

Course 5: Sequence Models

  • Week 1 Quiz - Recurrent Neural Networks: Text | PDF
  • Week 2 Quiz - Natural Language Processing & Word Embeddings: PDF
  • Week 3 Quiz - Sequence models & Attention mechanism: Text | PDF

Disclaimer

I recognize the time people spend on building intuition, understanding new concepts and debugging assignments. The solutions uploaded here are only for reference. They are meant to unblock you if you get stuck somewhere. Please do not copy any part of the code as-is (the programming assignments are fairly easy if you read the instructions carefully). Similarly, try out the quizzes yourself before you refer to the quiz solutions. This course is the most straight-forward deep learning course I have ever taken, with fabulous course content and structure. It's a treasure by the deeplearning.ai team.

Owner
Aman Chadha
Tinkerer @ . AI @ Stanford.
Aman Chadha
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Materials for my scikit-learn tutorial

Scikit-learn Tutorial Jake VanderPlas email: [email protected] twitter: @jakevdp gith

Jake Vanderplas 1.6k Dec 30, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
A GPU-optional modular synthesizer in pytorch, 16200x faster than realtime, for audio ML researchers.

torchsynth The fastest synth in the universe. Introduction torchsynth is based upon traditional modular synthesis written in pytorch. It is GPU-option

torchsynth 229 Jan 02, 2023
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION

CFN-SR A CROSS-MODAL FUSION NETWORK BASED ON SELF-ATTENTION AND RESIDUAL STRUCTURE FOR MULTIMODAL EMOTION RECOGNITION The audio-video based multimodal

skeleton 15 Sep 26, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
The official implementation for ACL 2021 "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval".

Code for "Challenges in Information Seeking QA: Unanswerable Questions and Paragraph Retrieval" (ACL 2021, Long) This is the repository for baseline m

Akari Asai 25 Oct 30, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022