Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Overview

logo

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functionalities into this repository that are related to evaluate EAI performance for indoor tasks. The Indoor Scene Synthesis module provides different methods for synthesize randomized indoor scenes that be visualized in Unity Engine. The Luminous for Alfred offers the complete pipline to conduct data augmentment such as generating Alfred tasks in Luminous, solving the trajectories of tasks, rendering images, and generating natural language descripitions.

over

Simulator Layout randomization Small Object Randomization Object Material randomization Number of rooms Number of objects
Habitat x x x 120 1000+?
Virtualhome x x 7 (houses) 357
ThreeDworld x 100+? 2500
iGibson x x 106 (houses) 1984
AI2Thor x 227 2000
Luminous + AI2Thor 2000

Feature Highlights

We highlight the features of Luminous here and readers may go directly into the modules for detailed implementations.

1. Indoor scene synthesis

We present Constrainted Stochastic Scene Generation in Luminous, which generates high-quality scene from the a graph-based representation of indoor scenes. By specifying the required objects and relationships between objects, we can sample an unlimited number of indoor scenes that satisfy the constraints.

teaser

Algorithm Scene Graph Inference Scene Generation Constrained RGBD rendering
PlanIT x x x
Grains x
3DSLN x
Human-Centric x x x
CSSG

2. Luminous for Alfred

We can generate Alfred trajectories from Luminous. After taking the task descriptions in Alfred, we apply the Task Parser to get the required indoor scenes. Then, a Task Sampler sample the tasks for Alfred challenge. Finally, we can add Natural Language Descriptions along with agent actions.

3. EAI Evaluation

We evaluation three models on Luminous for Alfred challenge.

  • MOCA
  • ET
  • HiTUT

See EAIEvaluation folder for more details.

alfred sample_alfred

Folder structure

Luminous
│   readme.md   
│
└─── EAIEvaluation
│   │   ET
│   │   MOCA
│   │   HiTUT
└───IndoorSceneSynthesis
│   │   3DFrontToolBox
│   │   ContrainedStochsticIndoorScene
│   │   LearningBasedMethod
│   │   └───3DSLN
│   │   └───DeepSynth
└───Luminous4Alfred
│   │   NaturalLanguageTool
│   │   TaskParser
│   │   TaskSampler
│   │   TaskSolver

Quick links

EAIEvaluation

CSSG

NaturalLanguageTool

3DFrontToolBox

Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
Awesome-AI-books - Some awesome AI related books and pdfs for learning and downloading

Awesome AI books Some awesome AI related books and pdfs for downloading and learning. Preface This repo only used for learning, do not use in business

luckyzhou 1k Jan 01, 2023
Paper Title: Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution

HKDnet Paper Title: "Heterogeneous Knowledge Distillation for Simultaneous Infrared-Visible Image Fusion and Super-Resolution" Email:

wasteland 11 Nov 12, 2022
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
Python library for analysis of time series data including dimensionality reduction, clustering, and Markov model estimation

deeptime Releases: Installation via conda recommended. conda install -c conda-forge deeptime pip install deeptime Documentation: deeptime-ml.github.io

495 Dec 28, 2022
🌎 The Modern Declarative Data Flow Framework for the AI Empowered Generation.

🌎 JSONClasses JSONClasses is a declarative data flow pipeline and data graph framework. Official Website: https://www.jsonclasses.com Official Docume

Fillmula Inc. 53 Dec 09, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023