PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Overview

Long Short-Term Transformer for Online Action Detection

Introduction

This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

network

Environment

  • The code is developed with CUDA 10.2, Python >= 3.7.7, PyTorch >= 1.7.1

    1. [Optional but recommended] create a new conda environment.

      conda create -n lstr python=3.7.7
      

      And activate the environment.

      conda activate lstr
      
    2. Install the requirements

      pip install -r requirements.txt
      

Data Preparation

  1. Download the THUMOS'14 and TVSeries datasets.

  2. Extract feature representations for video frames.

    • For ActivityNet pretrained features, we use the ResNet-50 model for the RGB and optical flow inputs. We recommend to use this checkpoint in MMAction2.

    • For Kinetics pretrained features, we use the ResNet-50 model for the RGB inputs. We recommend to use this checkpoint in MMAction2. We use the BN-Inception model for the optical flow inputs. We recommend to use the model here.

    Note: We compute the optical flow using DenseFlow.

  3. If you want to use our dataloaders, please make sure to put the files as the following structure:

    • THUMOS'14 dataset:

      $YOUR_PATH_TO_THUMOS_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── video_validation_0000051.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── video_validation_0000051.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── video_validation_0000051.npy (of size L x 22)
      |   ├── ...
      
    • TVSeries dataset:

      $YOUR_PATH_TO_TVSERIES_DATASET
      ├── rgb_kinetics_resnet50/
      |   ├── Breaking_Bad_ep1.npy (of size L x 2048)
      │   ├── ...
      ├── flow_kinetics_bninception/
      |   ├── Breaking_Bad_ep1.npy (of size L x 1024)
      |   ├── ...
      ├── target_perframe/
      |   ├── Breaking_Bad_ep1.npy (of size L x 31)
      |   ├── ...
      
  4. Create softlinks of datasets:

    cd long-short-term-transformer
    ln -s $YOUR_PATH_TO_THUMOS_DATASET data/THUMOS
    ln -s $YOUR_PATH_TO_TVSERIES_DATASET data/TVSeries
    

Training

Training LSTR with 512 seconds long-term memory and 8 seconds short-term memory requires less 3 GB GPU memory.

The commands are as follows.

cd long-short-term-transformer
# Training from scratch
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES
# Finetuning from a pretrained model
python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
    MODEL.CHECKPOINT $PATH_TO_CHECKPOINT

Online Inference

There are three kinds of evaluation methods in our code.

  • First, you can use the config SOLVER.PHASES "['train', 'test']" during training. This process devides each test video into non-overlapping samples, and makes prediction on the all the frames in the short-term memory as if they were the latest frame. Note that this evaluation result is not the final performance, since (1) for most of the frames, their short-term memory is not fully utlized and (2) for simplicity, samples in the boundaries are mostly ignored.

    cd long-short-term-transformer
    # Inference along with training
    python tools/train_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        SOLVER.PHASES "['train', 'test']"
    
  • Second, you could run the online inference in batch mode. This process evaluates all video frames by considering each of them as the latest frame and filling the long- and short-term memories by tracing back in time. Note that this evaluation result matches the numbers reported in the paper, but batch mode cannot be further accelerated as descibed in paper's Sec 3.6. On the other hand, this mode can run faster when you use a large batch size, and we recomand to use it for performance benchmarking.

    cd long-short-term-transformer
    # Online inference in batch mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE batch
    
  • Third, you could run the online inference in stream mode. This process tests frame by frame along the entire video, from the beginning to the end. Note that this evaluation result matches the both LSTR's performance and runtime reported in the paper. It processes the entire video as LSTR is applied to real-world scenarios. However, currently it only supports to test one video at each time.

    cd long-short-term-transformer
    # Online inference in stream mode
    python tools/test_net.py --config_file $PATH_TO_CONFIG_FILE --gpu $CUDA_VISIBLE_DEVICES \
        MODEL.CHECKPOINT $PATH_TO_CHECKPOINT MODEL.LSTR.INFERENCE_MODE stream DATA.TEST_SESSION_SET "['$VIDEO_NAME']"
    

Evaluation

Evaluate LSTR's performance for online action detection using perframe mAP or mcAP.

cd long-short-term-transformer
python tools/eval/eval_perframe --pred_scores_file $PRED_SCORES_FILE

Evaluate LSTR's performance at different action stages by evaluating each decile (ten-percent interval) of the video frames separately.

cd long-short-term-transformer
python tools/eval/eval_perstage --pred_scores_file $PRED_SCORES_FILE

Citations

If you are using the data/code/model provided here in a publication, please cite our paper:

@inproceedings{xu2021long,
	title={Long Short-Term Transformer for Online Action Detection},
	author={Xu, Mingze and Xiong, Yuanjun and Chen, Hao and Li, Xinyu and Xia, Wei and Tu, Zhuowen and Soatto, Stefano},
	booktitle={Conference on Neural Information Processing Systems (NeurIPS)},
	year={2021}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechanism

Period-alternatives-of-Softmax Experimental Demo for our paper 'Escaping the Gradient Vanishing: Periodic Alternatives of Softmax in Attention Mechani

slwang9353 0 Sep 06, 2021
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Simple and understandable swin-transformer OCR project

swin-transformer-ocr ocr with swin-transformer Overview Simple and understandable swin-transformer OCR project. The model in this repository heavily r

Ha YongWook 67 Dec 31, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022