Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Overview

Language Generation with Recurrent Generative Adversarial Networks without Pre-training

Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training".

A short summary of the paper is available here.

Sample outputs (32 chars)

" There has been to be a place w
On Friday , the stories in Kapac
From should be taken to make it 
He is conference for the first t
For a lost good talks to ever ti

Training

To start training the CL+VL+TH model, first download the dataset, available at http://www.statmt.org/lm-benchmark/, and extract it into the ./data directory.

Then use the following command:

python curriculum_training.py

The following packages are required:

  • Python 2.7
  • Tensorflow 1.1
  • Scipy
  • Matplotlib

The following parameters can be configured:

LOGS_DIR: Path to save model checkpoints and samples during training (defaults to './logs/')
DATA_DIR: Path to load the data from (defaults to './data/1-billion-word-language-modeling-benchmark-r13output/')
CKPT_PATH: Path to checkpoint file when restoring a saved model
BATCH_SIZE: Size of batch (defaults to 64)
CRITIC_ITERS: Number of iterations for the discriminator (defaults to 10)
GEN_ITERS: Number of iterations for the geneartor (defaults to 50)
MAX_N_EXAMPLES: Number of samples to load from dataset (defaults to 10000000)
GENERATOR_MODEL: Name of generator model (currently only 'Generator_GRU_CL_VL_TH' is available)
DISCRIMINATOR_MODEL: Name of discriminator model (currently only 'Discriminator_GRU' is available)
PICKLE_PATH: Path to PKL directory to hold cached pickle files (defaults to './pkl')
ITERATIONS_PER_SEQ_LENGTH: Number of iterations to run per each sequence length in the curriculum training (defaults to 15000)
NOISE_STDEV: Standard deviation for the noise vector (defaults to 10.0)
DISC_STATE_SIZE: Discriminator GRU state size (defaults to 512)
GEN_STATE_SIZE: Genarator GRU state size (defaults to 512)
TRAIN_FROM_CKPT: Boolean, set to True to restore from checkpoint (defaults to False)
GEN_GRU_LAYERS: Number of GRU layers for the genarator (defaults to 1)
DISC_GRU_LAYERS: Number of GRU layers for the discriminator (defaults to 1)
START_SEQ: Sequence length to start the curriculum learning with (defaults to 1)
END_SEQ: Sequence length to end the curriculum learning with (defaults to 32)
SAVE_CHECKPOINTS_EVERY: Save checkpoint every # steps (defaults to 25000)
LIMIT_BATCH: Boolean that indicates whether to limit the batch size  (defaults to true)

Parameters can be set by either changing their value in the config file or by passing them in the terminal:

python curriculum_training.py --START_SEQ=1 --END_SEQ=32

Generating text

The generate.py script will generate BATCH_SIZE samples using a saved model. It should be run using the parameters used to train the model (if they are different than the default values). For example:

python generate.py --CKPT_PATH=/path/to/checkpoint/seq-32/ckp --DISC_GRU_LAYERS=2 --GEN_GRU_LAYERS=2

(If your model has not reached stage 32 in the curriculum, make sure to change the '32' in the path above to the maximal stage in the curriculum that your model trained on.)

Evaluating text

To evaluate samples using our %-IN-TEST-n metrics, use the following command, linking to a txt file where each row is a sample:

python evaluate.py --INPUT_SAMPLE=/path/to/samples.txt

Reference

If you found this code useful, please cite the following paper:

@article{press2017language,
  title={Language Generation with Recurrent Generative Adversarial Networks without Pre-training},
  author={Press, Ofir and Bar, Amir and Bogin, Ben and Berant, Jonathan and Wolf, Lior},
  journal={arXiv preprint arXiv:1706.01399},
  year={2017}
}

Acknowledgments

This repository is based on the code published in Improved Training of Wasserstein GANs.

The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy for sma

THUDM 540 Dec 30, 2022
Code and dataset for ACL2018 paper "Exploiting Document Knowledge for Aspect-level Sentiment Classification"

Aspect-level Sentiment Classification Code and dataset for ACL2018 [paper] ‘‘Exploiting Document Knowledge for Aspect-level Sentiment Classification’’

Ruidan He 146 Nov 29, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
[SIGMETRICS 2022] One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search

One Proxy Device Is Enough for Hardware-Aware Neural Architecture Search paper | website One Proxy Device Is Enough for Hardware-Aware Neural Architec

10 Dec 16, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
9th place solution in "Santa 2020 - The Candy Cane Contest"

Santa 2020 - The Candy Cane Contest My solution in this Kaggle competition "Santa 2020 - The Candy Cane Contest", 9th place. Basic Strategy In this co

toshi_k 22 Nov 26, 2021
Multimodal Temporal Context Network (MTCN)

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022