This app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

Overview

CIRRUS Weather App

Climate Information, Research, and Records of the US

Video Demo: https://www.youtube.com/watch?v=k09VdqbKnMo

Description:

I have developed this app called CIRRUS (Climate Information, Research, and Records of the US). The app displays interesting statistical weather records and trends which can be used in climate related research including study of global warming.

This app was submitted for the 2021 Congressional App Challenge. I just wanted to share in case anyone finds it interesting.

Languages Used:

  • Python (Flask, Beautiful Soup, urllib/requests)
  • SQL
  • HTML
  • CSS
  • JavaScript
  • Jinja2 templating

Additional Tools used and API accesses done:

  • Zip Codes To Go (for collecting all zip codes of the USA)
  • Visual Crossing Weather API (for collecting statistical weather summary data)
  • Google Maps JavaScript API (for rendering the map with the output data)
  • Google Geocoding API (for converting zip code to map location latitude/longitude)

Data Collection:

  1. The program collects all the zip codes for each state (from the website https://www.zipcodestogo.com/) and stores them in a database along with city and state information. Since the data is in html format, Python BeautifulSoup library is used to extract information.

  2. Next the program fetches weather data from https://www.visualcrossing.com/weather-api. This data is collected from 1975 to September 2021 and the data is in CSV format, so Python CSV module is used for processing. [NOTE: A subscription needs to be purchased for this.]

For each zip code, the following monthly summary data is collected: Max Temperature, Min Temperature, Average Temperature, Wind Chill, Heat Index, Precipitation, Snow Depth, Wind Speed, Wind Gust, Visibility, Cloud Cover, and Relative Humidity.

Data collection is a one-time activity and once done, it can be skipped for subsequent runs.

Data Processing and Visualization:

Data is presented on the web page based on user query. There are two query options:

  1. Min-Max records for various weather parameters: The user can select a month from a drop-down menu, enter a year, and click the Get Weather Data button. The program then searches the database, finds locations for parameters such as highest temperature, max rainfall, etc. for that year and month across the entire country, and displays them all in one map. For more information, the user can hover over the marker, which will display a label with the city, state, and zip code of that marker, as well as the parameter and the value.

  2. Historical chart for any specific parameter: For this query option, select a specific parameter, such as "Average Temperature", from the drop-down menu, and click the Get Historical Chart button. We now get the US average temperature chart. Ignoring 2021 (since we don't have data for the entire year), we can see an increasing trend in temperature from 54.8°F in 1975 to 56.6°F in 2020.

File Descriptions:

README.md: The README file.

app.py: The main python file of the application (contains all the functions and Flask routes).

datalib.py: Supplemental data (constants, variables, literals) all in one file.

bs4/: If Beautiful Soup module is not installed, then the package can be downloaded and unarchived in order to use the library.

styles.css: Stylesheet for the HTML files.

chart.html: HTML file for displaying chart results.

index.html: App home page.

layout.html: Common HTML constructs kept in one file to avoid clutter due to repetition and keep all other HTML files clean.

results.html: HTML file for processing and visualization of query results.

weatherdb.sqlite: The database that stores all the database tables. This database is not included (too large to upload).

zipcount.json: Contains the zip code count for each state. Used to determine whether all zip codes for the current state have been collected or not.

Here is the file/directory tree of all files.

CIRRUS:~$tree
├── README.md
├── app.py
├── datalib.py
├── static
│ └── styles.css
├── templates
│ ├── chart.html
│ ├── index.html
│ ├── layout.html
│ └── results.html
├── weatherdb.sqlite
└── zipcount.json

In order to run the program, first export the API keys as below.

For Linux/Mac operating systems:

$ export API_KEY_GEO=
   
    
$ export API_KEY_WEA=
    

    
   

For Windows operating systems:

PS C:\> $Env:API_KEY_GEO = 
   
    
PS C:\> $Env:API_KEY_WEA = 
    

    
   

Also, be sure to have a Maps API key to see the map on the results page. Insert it into the below line of code (in the program, there's already a key there, but that one will not work):

">

Then run flask. Access the website by clicking on the given URL.

In MacOS/Linux:

(Press CTRL+C to quit) * Restarting with stat">
$ flask run
* Serving Flask app "app.py" (lazy loading)
* Environment: development
* Debug mode: off
* Running on 
   
     (Press CTRL+C to quit)
* Restarting with stat

   

In Windows:

PS C:\> flask run
* Environment: production
WARNING: This is a development server. Do not use it in a production deployment.
Use a production WSGI server instead.
* Debug mode: off
(date/time) - * Running on 
   
     (Press CTRL+C to quit)

   

Screenshots:

App Homepage:

App Homepage

Get Weather Data Query Results:

Get Weather Data Query Results

Get Historical Chart Query Results (Avg Temperature):

Get Historical Chart Query Results (Avg Temperature)

Get Historical Chart Query Results (Precipitation):

Get Historical Chart Query Results (Precipitation)

NOTES:

  1. Since there are many locations displayed and they can be spread across all over the country, the map is centered at the center of the USA (latitude: 39.50, longitude: -98.35) so all markers can fit on the screen properly.
  2. For displaying the markers, zip codes cannot be used for locations. Therefore, the Google Geocoding API is used to fetch latitude/longitude information for the zip codes.
  3. For a more comprehensive study on global warming, we have to take the entire world’s data into consideration and more precise and extensive data mining is needed. However, even with limited data, we can clearly see the gradient of rise in temperature.
  4. Not just for temperature and global warming, this app can also be used to study all other parameters mentioned earlier such as precipitation, snow depth, etc.
  5. I noticed sometimes the data returned by Visual Crossing website had values that did not seem right. Also, some of the weather parameters for some months may be missing sometimes. So please be aware of this in case some data doesn’t make sense or is missing. However, with a large dataset, any such anomalies average out and do not have much impact on the overall results.
A package to fetch sentinel 2 Satellite data from Google.

Sentinel 2 Data Fetcher Installation Create a Virtual Environment and activate it. python3 -m venv venv . venv/bin/activate Install the Package via pi

1 Nov 18, 2021
A Python package for delineating nested surface depressions from digital elevation data.

Welcome to the lidar package lidar is Python package for delineating the nested hierarchy of surface depressions in digital elevation models (DEMs). I

Qiusheng Wu 166 Jan 03, 2023
Yet Another Time Series Model

Yet Another Timeseries Model (YATSM) master v0.6.x-maintenance Build Coverage Docs DOI | About Yet Another Timeseries Model (YATSM) is a Python packag

Chris Holden 60 Sep 13, 2022
Python interface to PROJ (cartographic projections and coordinate transformations library)

pyproj Python interface to PROJ (cartographic projections and coordinate transformations library). Documentation Stable: http://pyproj4.github.io/pypr

832 Dec 31, 2022
WebGL2 powered geospatial visualization layers

deck.gl | Website WebGL2-powered, highly performant large-scale data visualization deck.gl is designed to simplify high-performance, WebGL-based visua

Vis.gl 10.5k Jan 08, 2023
A simple reverse geocoder that resolves a location to a country

Reverse Geocoder This repository holds a small web service that performs reverse geocoding to determine whether a user specified location is within th

4 Dec 25, 2021
Tile Map Service and OGC Tiles API for QGIS Server

Tiles API Add tiles API to QGIS Server Tiles Map Service API OGC Tiles API Tile Map Service API - TMS The TMS API provides these URLs: /tms/? to get i

3Liz 6 Dec 01, 2021
Streamlit Component for rendering Folium maps

streamlit-folium This Streamlit Component is a work-in-progress to determine what functionality is desirable for a Folium and Streamlit integration. C

Randy Zwitch 224 Dec 30, 2022
A proof-of-concept jupyter extension which converts english queries into relevant python code

Text2Code for Jupyter notebook A proof-of-concept jupyter extension which converts english queries into relevant python code. Blog post with more deta

DeepKlarity 2.1k Dec 29, 2022
A part of HyRiver software stack for handling geospatial data manipulations

Package Description Status PyNHD Navigate and subset NHDPlus (MR and HR) using web services Py3DEP Access topographic data through National Map's 3DEP

Taher Chegini 5 Dec 14, 2022
How to use COG's (Cloud optimized GeoTIFFs) with Rasterio

How to use COG's (Cloud optimized GeoTIFFs) with Rasterio According to Cogeo.org: A Cloud Opdtimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at

Marvin Gabler 8 Jul 29, 2022
Create Siege configuration files from Cloud Optimized GeoTIFF.

cogeo-siege Documentation: Source Code: https://github.com/developmentseed/cogeo-siege Description Create siege configuration files from Cloud Optimiz

Development Seed 3 Dec 01, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

34 Dec 27, 2022
Automated download of LANDSAT data from USGS website

LANDSAT-Download It seems USGS has changed the structure of its data, and so far, I have not been able to find the direct links to the products? Help

Olivier Hagolle 197 Dec 30, 2022
Django model field that can hold a geoposition, and corresponding widget

django-geoposition A model field that can hold a geoposition (latitude/longitude), and corresponding admin/form widget. Prerequisites Starting with ve

Philipp Bosch 324 Oct 17, 2022
A multi-page streamlit app for the geospatial community.

A multi-page streamlit app for the geospatial community.

Qiusheng Wu 522 Dec 30, 2022
Creates 3D geometries from 2D vector graphics, for use in geodynamic models

geomIO - creating 3D geometries from 2D input This is the Julia and Python version of geomIO, a free open source software to generate 3D volumes and s

3 Feb 01, 2022
Cloud Optimized GeoTIFF creation and validation plugin for rasterio

rio-cogeo Cloud Optimized GeoTIFF (COG) creation and validation plugin for Rasterio. Documentation: https://cogeotiff.github.io/rio-cogeo/ Source Code

216 Dec 31, 2022
ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs)

ProjPicker ProjPicker (projection picker) is a Python module that allows the user to select all coordinate reference systems (CRSs) whose extent compl

Huidae Cho 4 Feb 06, 2022
Focal Statistics

Focal-Statistics The Focal statistics tool in many GIS applications like ArcGIS, QGIS and GRASS GIS is a standard method to gain a local overview of r

Ifeanyi Nwasolu 1 Oct 21, 2021