Gray Zone Assessment

Overview

Gray Zone Assessment

Get started

  1. Clone github repository
git clone https://github.com/andreanne-lemay/gray_zone_assessment.git
  1. Build docker image
docker build -t gray_zone docker/
  1. Run docker container
docker run -it -v tunnel/to/local/folder:/tunnel --gpus 0 gray_zone:latest bash
  1. Run the following command at the root of the repository to install the modules
cd path/to/gray_zone_assessment
pip install -e .
  1. Train model
python run_model.py -o <outpath/path> -p <resources/training_configs/config.json> -d <image/data/path> -c <path/csv/file.csv>

For more information on the different flags: python run_model.py --help

Configuration file (flag -p or --param-path)

The configuration file is a json file containing the main training parameters.
Some json file examples are located in gray_zone/resources/training_configs/

Required configuration parameters

Parameter Description
architecture Architecture id contained in Densenet or Resnet family. Choice between: 'densenet121', 'densenet169', 'densenet201', 'densenet264', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
model_type Choice between "classification", "ordinal", "regression".
loss Loss function id. Choice between 'ce' (Cross entropy), 'mse' (Mean square error), 'l1' (L1), 'bce' (Binary cross entropy), 'coral' (Ordinal loss), 'qwk' (Quadratic weighted kappa).
batch_size Batch size (int).
lr Learning rate (float).
n_epochs Number of training epochs (int).
device Device id (e.g., 'cuda:0', 'cpu') (str).
val_metric Choice between "auc" (average ROC AUC over all classes), "val_loss" (minimum validation loss), "kappa" (linear Cohen's kappa), default "accuracy".
dropout_rate Dropout rate (Necessary for Monte Carlo model's). A dropout rate of 0 will disable dropout. (float).
is_weighted_loss Indicates if the loss is weighted by the number of cases by class (bool).
is_weighted_sampling Indicates if the sampling is weighted by the number of cases by class (bool).
seed Random seed (int).
train_frac Fraction of cases used for training if splitting not already done in csv file, or else the parameter is ignored (float).
test_frac Fraction of cases used for testing if splitting not already done in csv file, or else the parameter is ignored (float).
train_transforms / val_transforms monai training / validation transforms with parameters. Validation transforms are also used during testing (see https://docs.monai.io/en/latest/transforms.html for transform list)

csv file (flag -c or --csv-path)

The provided csv file contains the filename of the images used for training, GT labels (int from 0-n_class), patient ID (str) and split column (containing 'train', 'val' or 'test') (optional).

Example of csv file with the default column names. If the column names are different from the default values, the flags --label-colname, --image-colname, --patient-colname, and --split-colname can be used to indicate the custom column names. There can be more columns in the csv file. All this metadata will be included in predictions.csv and split_df.csv.

image label patient dataset
patient1_000.png 0 patient1 train
patient1_001.png 0 patient1 train
patient2_000.png 2 patient2 val
patient2_001.png 2 patient2 val
patient2_002.png 2 patient2 val
patient3_000.png 1 patient3 test
patient3_001.png 1 patient3 test

Output directory (flag -o or --output-path)


└── output directory                # Output directory specified with `-o`  
    ├──   checkpoints               # All models (one .pth per epoch)  
    |     ├──  checkpoint0.pth   
    |     ├──  ...  
    |     └──  checkpointn.pth   
    ├──   best_metric_model.pth     # Best model based on validation metric  
    ├──   params.json               # Parameters used for training (configuration file)  
    ├──   predictions.csv           # Test results  
    ├──   split_df.csv              # csv file containing image filenames, labels, split and patient id  
    └──   train_record.json         # Record of CLI used to train and other info for reproducibility  
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised de

Hang 94 Dec 25, 2022
Project NII pytorch scripts

project-NII-pytorch-scripts By Xin Wang, National Institute of Informatics, since 2021 I am a new pytorch user. If you have any suggestions or questio

Yamagishi and Echizen Laboratories, National Institute of Informatics 184 Dec 23, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022