Implicit neural differentiable FM synthesizer

Related tags

Audiofmsynth
Overview

Implicit neural differentiable FM synthesizer

Replicate

The purpose of this project is to emulate arbitrary sounds with FM synthesis, where the parameters of the FM synth are learned by optimization.

This idea was conceived and implemented during the Neural Audio Synthesis Hackathon 2021. Thanks to Ben Hayes for organizing the workshop and to Mia Chiquier for pointing me towards SIREN!

Architecture

Please refer to FMNet and Envelope in synth.py for the actual architectural details.

This model takes as input a list of time steps t_1, t_2, ..., sampled at some sample rate, and outputs an audio signal in the same sample rate.

Similar to SIREN, it feeds the input time step values through sinusoidal activation functions initialized with specific weights. In this work we initialize weights to 127 musical pitches from C#-1 to G9. We call this layer the "carrier".

We only use a single sinusoidal layer, but we modulate the frequencies of this layer with a summed output from a separate cosine layer with 127 cosine nodes, also initialized from musical pitches C#-1 to G9. We refer to this layer as the "modulator"

Each carrier and modulator node has both a frequency and an amplitude component. We learn a global phase in the range (0, 2*pi) that is shared among all carrier and modulator frequencies. This is effectively a global "bias" term to the sinusoidal activation functions.

The goal of this project is to provide a differentiable emulation of a simple FM synthesizer, so we take a softmax of both carrier and modulator layers' amplitudes.

In addition to carrier and modulator amplitudes we also learn separate amplitude envelope curves for each carrier and modulator node. The envelope is modeled by the bell curve function 1 / sqrt((1 + t * slope) + (slope + offset)).

Optimization

This model learns a implicit neural representation for a target audio signal. This means that we optimize the network once for every target signal.

We use the L2 loss between the generated audio signal and the target audio signal as the main loss function.

We also provide optional additional loss terms that maximize the "spikiness" of carrier and modulator amplitude vectors, in order to make the network pick a single carrier and modulator frequency. This term is optional since it sometimes learns more interesting sounds when several carrier and modulators are active.

We use the ADAM optimizer with a learning rate of 0.01.

Inference

Since this is an implicit neural representation, we can generate outputs at arbitrary sample rates and resolutions. This allows for seamless time stretching and upscaling.

The inference code also supports "stereo detuning" to create musically interesting sounds.

Owner
Andreas Jansson
Machine learning and music
Andreas Jansson
Vixtify - Python Controlled Music Player

Strumm Sound Playlist : Click me to listen Welcome to GitHub Pages You can use the editor on GitHub to maintain and preview the content for your websi

Vicky Kumar 2 Feb 03, 2022
A library for augmenting annotated audio data

muda A library for Musical Data Augmentation. muda package implements annotation-aware musical data augmentation, as described in the muda paper. The

Brian McFee 214 Nov 22, 2022
Delta TTA(Text To Audio) SoftWare

Text-To-Audio-Windows Delta TTA(Text To Audio) SoftWare Info You Can Use It For Convert Your Text To Audio File You Just Write Your Text And Your End

Delta Inc. 2 Dec 14, 2021
A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

A collection of free MIDI chords and progressions ready to be used in your DAW, Akai MPC, or Roland MC-707/101

921 Jan 05, 2023
Bot duniya Music Player

Bot duniya Music Player Requirements 📝 FFmpeg (Latest) NodeJS nodesource.com (NodeJS 17+) Python (3.10+) PyTgCalls (Lastest) 2nd Telegram Account (ne

Aman Vishwakarma 16 Oct 21, 2022
An 8D music player made to enjoy Halloween this year!🤘

HAPPY HALLOWEEN buddy! Split Player Hello There! Welcome to SplitPlayer... Supposed To Be A 8DPlayer.... You Decide.... It can play the ordinary audio

Akshat Kumar Singh 1 Nov 04, 2021
GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

GiantMIDI-Piano is a classical piano MIDI dataset contains 10,854 MIDI files of 2,786 composers

Bytedance Inc. 1.3k Jan 04, 2023
NovaMusic is a music sharing robot. Users can get music and music lyrics using inline queries.

A music sharing telegram robot using Redis database and Telebot python library using Redis database.

Hesam Norin 7 Oct 21, 2022
python wrapper for rubberband

pyrubberband A python wrapper for rubberband. For now, this just provides lightweight wrappers for pitch-shifting and time-stretching. All processing

Brian McFee 106 Nov 28, 2022
This is my voice assistant Patric!

voice-assistant This is my voice assistant Patric! You can add can add commands and even modify his name Indice How to use Installation guide How to u

Norbert Gabos 1 Jun 28, 2022
Supysonic is a Python implementation of the Subsonic server API.

Supysonic Supysonic is a Python implementation of the Subsonic server API. Current supported features are: browsing (by folders or tags) streaming of

Alban 228 Nov 19, 2022
This is an OverPowered Vc Music Player! Will work for you and play music in Voice Chatz

VcPlayer This is an OverPowered Vc Music Player! Will work for you and play music in Voice Chatz Telegram Voice-Chat Bot [PyTGCalls] ⇝ Requirements ⇜

1 Dec 20, 2021
Multi-Track Music Generation with the Transfomer and the Johann Sebastian Bach Chorales dataset

MMM: Exploring Conditional Multi-Track Music Generation with the Transformer and the Johann Sebastian Bach Chorales Dataset. Implementation of the pap

102 Dec 08, 2022
FPGA based USB 2.0 high speed audio interface featuring multiple optical ADAT inputs and outputs

ADAT USB Audio Interface FPGA based USB 2.0 High Speed audio interface featuring multiple optical ADAT inputs and outputs Status / current limitations

Hans Baier 78 Dec 31, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.1k Dec 31, 2022
Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums)

LAKH MuseNet MIDI Dataset Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums) Bonus: Choir on Channel 10 Please CC

Alex 6 Nov 20, 2022
🎵 A music bot for discord servers!

music bot A music bot for Discord Servers Features Play songs in your discord server Get the lyrics without going on a web explorer Commands Command P

1 Jul 25, 2022
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
This Is Telegram Music UserBot To Play Music Without Being Admin

This Is Telegram Music UserBot To Play Music Without Being Admin

Krishna Kumar 36 Sep 13, 2022
convert-to-opus-cli is a Python CLI program for converting audio files to opus audio format.

convert-to-opus-cli convert-to-opus-cli is a Python CLI program for converting audio files to opus audio format. Installation Must have installed ffmp

4 Dec 21, 2022