Code-free deep segmentation for computational pathology

Overview

NoCodeSeg: Deep segmentation made easy!

This is the official repository for the manuscript "Code-free development and deployment of deep segmentation models for digital pathology", submitted to Frontiers in Medicine.

The repository contains trained deep models for epithelium segmentation of HE and CD3 immunostained WSIs, as well as source code relevant for importing/exporting annotations/predictions in QuPath, from DeepMIB, and FastPathology. See here for how to download the 251 annotated WSIs.

Getting started

Watch the video

A video tutorial of the proposed pipeline was published on YouTube. It demonstrates the steps for:

  • Downloading and installing the softwares
  • QuPath
    • Create a project, then export annotations as patches with label files
    • Export patches from unannotated images for prediction in DeepMIB
    • (later) Import predictions for MIB and FastPathology as annotations
  • MIB
    • Use the annotated patches/labels exported from QuPath
    • Configuring and training deep segmentation models (i.e. U-Net/SegNet)
    • Use the trained U-net to predict unannotated patches exported from QuPath
    • Export trained models into the ONNX format for use in FastPathology
  • FastPathology
    • Importing and creating a configuration file for the DeepMIB exported ONNX model
    • Create a project and load WSIs into a project
    • Use the U-Net ONNX model to render predictions on top of the WSI in real time
    • Export full sized WSI tiffs for import into QuPath

Data

The 251 annotated WSIs are being processed before publishing on DataverseNO, where it will be made openly available for anyone

Reading annotations

The annotations are stored as tiled, pyramidal TIFFs, which makes it easy to generate patches from the data without the need for any preprocessing. Reading these files and working with them to generate training data, is already described in the tutorial video above.

TL;DR: Load TIFF as annotations in QuPath using provided groovy script and exporting these as labelled tiles.

Reading annotation in Python

However, if you wish to use Python, the annotations can be read exactly the same way as regular WSIs (for instance using OpenSlide):

import openslide

reader = ops.OpenSlide("path-to-annotation-image.tiff")
patch = reader.read_region(location=(x, y), level, size=(w, h))
reader.close()

Pixels here will be one-to-one with the original WSI. To generate patches for training, it is also possible to use pyFAST, which does the patching for you. For an example see here.

Citation

Please, consider citing our paper, if you find the work useful:

  @misc{pettersen2021codefree,
  title={Code-free development and deployment of deep segmentation models for digital pathology}, 
  author={Henrik Sahlin Pettersen and Ilya Belevich and Elin Synnøve Røyset and Erik Smistad and Eija Jokitalo and Ingerid Reinertsen and Ingunn Bakke and André Pedersen},
  year={2021},
  eprint={2111.08430},
  archivePrefix={arXiv},
  primaryClass={q-bio.QM}}
Comments
  • Create model multiple classes

    Create model multiple classes

    Hi @andreped

    Thanks for this great software and workflow. I would like to generate a model which classifies the epithelia in the colon from WSIs into villi (usually at the boundary) and crypts (circular structures). Essentially, there would be 3 classes,

    • background
    • villi and
    • crypts

    My plan is to use your models to generate annotations from my WSIs, import into QuPath, correct them, and then split annotations into different classes.

    How do I configure image export for 3 different classes from QuPath, train in MIB and then run on FastPathology?

    Is it possible to do this and is this a good workflow idea?

    Cheers Pradeep

    enhancement good first issue 
    opened by pr4deepr 19
  • Add instructions on how to run WSI-level predictions

    Add instructions on how to run WSI-level predictions

    As our TileImporter script does not support multi-class, the alternative method is to run predictions on WSI level.

    This requires you to do something slightly different when running predictions from what was done in the tutorial video.

    However, I don't see that there is any documentations for this. This should be added to assist users.

    enhancement 
    opened by andreped 10
  • Import tiles script QuPath

    Import tiles script QuPath

    Hi @andreped When I try the import pyramidal tiff script to improve annotations generated by FastPathology, the annotations are smaller by 4 times compared to the WSI. I can't enter a value to control for downsample in the new script anymore. It looks like the script has been updated compared to the on in the video I've reused the old version of the script to import annotations for now .

    Cheers Pradeep

    bug enhancement 
    opened by pr4deepr 7
  • Export Tiles from QuPath with multiple classes

    Export Tiles from QuPath with multiple classes

    First some context: I am attempting to obtain multi-class segmentation of cerebellum tissue with different cellular layers corresponding to separate classes. I have annotated four classes: 'EGL', 'Molecular layer', 'IGL', and 'WM' on QuPath. I tested export tiles with multiple classes from QuPath using two the two different scripts available. Here are the issues I am having with both:

    1. The script by @andreped is giving me an error:

    ERROR: MissingMethodException at line 61: No signature of method: qupath.lib.images.writers.TileExporter.labeledServer() is applicable for argument types: (qupath.lib.images.servers.LabeledImageServer$Builder) values: [[email protected]] Possible solutions: labeledServer(qupath.lib.images.servers.ImageServer)

    ERROR: org.codehaus.groovy.runtime.ScriptBytecodeAdapter.unwrap(ScriptBytecodeAdapter.java:70) org.codehaus.groovy.runtime.callsite.PojoMetaClassSite.call(PojoMetaClassSite.java:46) org.codehaus.groovy.runtime.callsite.CallSiteArray.defaultCall(CallSiteArray.java:47) org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(AbstractCallSite.java:125) org.codehaus.groovy.runtime.callsite.AbstractCallSite.call(AbstractCallSite.java:139) Script16.run(Script16.groovy:62) org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.eval(GroovyScriptEngineImpl.java:317) org.codehaus.groovy.jsr223.GroovyScriptEngineImpl.eval(GroovyScriptEngineImpl.java:155) qupath.lib.gui.scripting.DefaultScriptEditor.executeScript(DefaultScriptEditor.java:982) qupath.lib.gui.scripting.DefaultScriptEditor.executeScript(DefaultScriptEditor.java:914) qupath.lib.gui.scripting.DefaultScriptEditor.executeScript(DefaultScriptEditor.java:829) qupath.lib.gui.scripting.DefaultScriptEditor$2.run(DefaultScriptEditor.java:1345) java.base/java.util.concurrent.Executors$RunnableAdapter.call(Unknown Source) java.base/java.util.concurrent.FutureTask.run(Unknown Source) java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) java.base/java.lang.Thread.run(Unknown Source)

    1. The script by @pr4deepr is yielding what I need (see below), however, many of the tiles are just background. Is there a way to incorporate the glassthreshold in the script by @andreped to avoid the tiles with too much background? Additionally, in order to get this script to work, I had to edit this line to .multichannelOutput(false).

    20211026_Javid_01Image_01 vsi - 20x  d=5 79044,x=10376,y=36318,w=2965,h=2964

    bug 
    opened by aaronsathya 6
  • generic multi-class support?

    generic multi-class support?

    The current importTiles script does not seem to support importing patches of multiple labels. This one is quite annoying to add multi-class support for, but is something we could try to do early next week? Let us schedule a session.

    There have been implemented multi-class variants for the other scripts (i.e., exportTiles and importPyramidalTIFF), but these have not been tested in various scenarios. Currently, these are split into separate scripts; one for single-class and one for multi-class, but I think the multi-class scripts might actually handle the single-class situation as well. Could you run some checks in your pipeline to see if the multi-class scripts are sufficient?

    enhancement 
    opened by andreped 4
  • Result from FastPathology fails to import in QuPath

    Result from FastPathology fails to import in QuPath

    This was observed and discussed in another Issue in the FastPathology repo: https://github.com/AICAN-Research/FAST-Pathology/issues/45

    Opening an Issue here to track the issue.

    This is likely due to the changed in how the predictions are stored on disk in the new FastPathology version v1.0.1.

    bug 
    opened by andreped 2
  • Download count is not updating

    Download count is not updating

    Currently, the current download count in the download shield is fixed.

    That is because there was no easy way to catch the current count through markdown.

    I attempted to create a JS and Python solution for doing that, which were to be run periodically through github actions, but that would result in lots of redundant commits, that are not relevant for the user.

    I'll have it fixed until I have time to come up with a better solution.

    enhancement help wanted 
    opened by andreped 1
  • multiclass_export_tiles

    multiclass_export_tiles

    The main change is multichannelOutput is set to true and there is a label export for each threshold.

    // Create an ImageServer where the pixels are derived from annotations
    //added option for multi-class export
    def labelServer = new LabeledImageServer.Builder(imageData)
        .backgroundLabel(0, ColorTools.WHITE) // Specify background label (usually 0 or 255)
        .downsample(downsample)    // Choose server resolution; this should match the resolution at which tiles are exported
        .addLabel('Epithelia', 1)      // Choose output labels (Define Threshold for each value for each label)
        .addLabel('Crypt', 2)
        .multichannelOutput(true)  // If true, each label is a different channel (required for multiclass probability)
        .build()
    
    

    Ideally, a loop to run through each label would be nice, so we don't have to define it manually

    opened by pr4deepr 0
  • Multi-class tile import?

    Multi-class tile import?

    The current tileImport script does not support multiclass tiles, that is produced prediction tiles generated from MIB by a trained multi-class model.

    It is possible to import predictions from MIB to QuPath by predicting on the full WSI in MIB which produces a stitched prediction image, which can be imported in QuPath using the importStitchedTIFfromMIBscript, similarly as done for FastPathology. And therefore, for the full pipeline a tile importer is not critical for using our pipeline.

    However, there are scenarios where having a tile importer is beneficial over the other alternative, for instance if one only wishes to run prediction on a smaller region of the WSI (based on segmentations in QuPath) - which can be especially helpful if the image is extremely large. This can make inference a lot faster.

    It is possible to do such a workflow in FastPathology, given that you provide the region of interest to run inference on. However, no such method has been made easily accessible. It would also require annotations or a model that can produce these ROI segmentation to use as a preprocessing step for the next patch-wise model.

    Therefore, having multi-class support for the tile importer could be a valuable feature.

    enhancement 
    opened by andreped 1
Releases(download-badge)
  • download-badge(Jun 21, 2022)

  • v1.0.0(Jun 13, 2022)

    Released code relevant for Frontiers article.

    Code is freezed to a release to keep supporting the old versions of FastPathology and QuPath used in the tutorial video.

    Future source code will be made compatible with more recent versions of both softwares.

    Full Changelog: https://github.com/andreped/NoCodeSeg/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Owner
André Pedersen
PhD Candidate in Medical Technology at NTNU | Master of Science at SINTEF Health Research
André Pedersen
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Implements VQGAN+CLIP for image and video generation, and style transfers, based on text and image prompts. Emphasis on ease-of-use, documentation, and smooth video creation.

VQGAN-CLIP-GENERATOR Overview This is a package (with available notebook) for running VQGAN+CLIP locally, with a focus on ease of use, good documentat

Ryan Hamilton 98 Dec 30, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022