Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Overview

Multi-Task Meta-Learning Modification with Stochastic Approximation

This repository contains the code for the paper
"Multi-Task Meta-Learning Modification with Stochastic Approximation".

Method pipeline

Dependencies

This code has been tested on Ubuntu 16.04 with Python 3.8 and PyTorch 1.8.

To install the required dependencies:

pip install -r requirements.txt

Usage

To reproduce the results on benchmarks described in our article, use the following scripts. To vary types of the experiments, change the parameters of the scripts responsible for benchmark dataset, shot and way (e.g. miniImageNet 1-shot 5-way or CIFAR-FS 5-shot 2-way).

MAML

Multi-task modification (MTM) for Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017).

Multi-task modifications for MAML are trained on top of baseline MAML model which has to be trained beforehand.

To train MAML (reproduced) on miniImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-miniimagenet \
    --dataset miniimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA-Track on miniImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name mini-imagenet-mtm-spsa-track \
    --load "./results/reproduced-miniimagenet/model.th" \
    --dataset miniimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting spsa-track \
    --normalize-spsa-weights-after 100 \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on tieredImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-tieredimagenet \
    --dataset tieredimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA on tieredImageNet 1-shot 2-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name tiered-imagenet-mtm-spsa \
    --load "./results/reproduced-tieredimagenet/model.th" \
    --dataset tieredimagenet \
    --num-ways 2 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting spsa-delta \
    --normalize-spsa-weights-after 100 \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on FC100 5-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-fc100 \
    --dataset fc100 \
    --num-ways 5 \
    --num-shots 5 \
    --num-steps 5 \
    --num-epochs 300 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM SPSA-Coarse on FC100 5-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name fc100-mtm-spsa-coarse \
    --load "./results/reproduced-fc100/model.th" \
    --dataset fc100 \
    --num-ways 5 \
    --num-shots 5 \
    --num-steps 5 \
    --task-weighting spsa-per-coarse-class \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML (reproduced) on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name reproduced-cifar \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --num-epochs 600 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM Inner First-Order on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name cifar-mtm-inner-first-order \
    --load "./results/reproduced-cifar/model.th" \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting gradient-novel-loss \
    --use-inner-optimizer \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To train MAML MTM Backprop on CIFAR-FS 1-shot 5-way benchmark, run:

python maml/train.py ./datasets/ \
    --run-name cifar-mtm-backprop \
    --load "./results/reproduced-cifar-5shot-5way/model.th" \
    --dataset cifarfs \
    --num-ways 5 \
    --num-shots 1 \
    --num-steps 5 \
    --task-weighting gradient-novel-loss \
    --num-epochs 40 \
    --use-cuda \
    --output-folder ./results

To test any of the above-described benchmarks, run:

python maml/test.py ./results/path-to-config/config.json --num-steps 10 --use-cuda

For instance, to test MAML MTM SPSA-Track on miniImageNet 1-shot 2-way benchmark, run:

python maml/test.py ./results/mini-imagenet-mtm-spsa-track/config.json --num-steps 10 --use-cuda

Prototypical Networks

Multi-task modification (MTM) for Prototypical Networks (ProtoNet) (Snell et al., 2017).

To train ProtoNet MTM SPSA-Track with ResNet-12 backbone on miniImageNet 1-shot 5-way benchmark, run:

python protonet/train.py \
    --dataset miniImageNet \
    --network ResNet12 \
    --tracking \
    --train-shot 1 \
    --train-way 5 \
    --val-shot 1 \
    --val-way 5

To test ProtoNet MTM SPSA-Track with ResNet-12 backbone on miniImageNet 1-shot 5-way benchmark, run:

python protonet/test.py --dataset miniImageNet --network ResNet12 --shot 1 --way 5

To train ProtoNet MTM Backprop with 64-64-64-64 backbone on CIFAR-FS 1-shot 2-way benchmark, run:

python protonet/train.py \
    --dataset CIFAR_FS \
    --train-weights \
    --train-weights-layer \
    --train-shot 1 \
    --train-way 2 \
    --val-shot 1 \
    --val-way 2

To test ProtoNet MTM Backprop with 64-64-64-64 backbone on CIFAR-FS 1-shot 5-way benchmark, run:

python protonet/test.py --dataset CIFAR_FS --shot 1 --way 2

To train ProtoNet MTM Inner First-Order with 64-64-64-64 backbone on FC100 10-shot 5-way benchmark, run:

python protonet/train.py \
    --dataset FC100 \
    --train-weights \
    --train-weights-opt \
    --train-shot 10 \
    --train-way 5 \
    --val-shot 10 \
    --val-way 5

To test ProtoNet MTM Inner First-Order with 64-64-64-64 backbone on FC100 10-shot 5-way benchmark, run:

python protonet/test.py --dataset FC100 --shot 10 --way 5

To train ProtoNet MTM SPSA with 64-64-64-64 backbone on tieredImageNet 5-shot 2-way benchmark, run:

python protonet/train.py \
    --dataset tieredImageNet \
    --train-shot 5 \
    --train-way 2 \
    --val-shot 5 \
    --val-way 2

To test ProtoNet MTM SPSA with 64-64-64-64 backbone on tieredImageNet 5-shot 2-way benchmark, run:

python protonet/test.py --dataset tieredImageNet --shot 5 --way 2

Acknowledgments

Our code uses some dataloaders from Torchmeta.

Code in maml folder is based on the extended implementation from Torchmeta and pytorch-maml. The code has been updated so that baseline scores more closely follow those of the original MAML paper.

Code in protonet folder is based on the implementation from MetaOptNet. All .py files in this folder except for dataloaders.py and optimize.py were adopted from this implementation and modified afterwards. A copy of Apache License, Version 2.0 is available in protonet folder.

Owner
Andrew
Andrew
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022