Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Overview

Brain-Image-Segmentation

Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of brain abnormalities. However, it is a time-consuming task to be performed by medical experts. In addition to that, it is challenging due to intensity overlap between the different tissues caused by the intensity homogeneity and artifacts inherent to MRI. Tominimize this effect, it was proposed to apply histogram based preprocessing. The goal of this project was to develop a robust and automatic segmentation of the human brain.

To tackle the problem, I have used a Convolutional Neural Network (CNN) based approach. U-net is one of the most commonly used and best-performing architecture in medical image segmentation. This moodel consists of the 2-D implementation of the U-Net.The performance was evaluated using Dice Coefficient (DSC).

Dataset

This model was built for the following dataset: https://figshare.com/articles/brain_tumor_dataset/1512427

3064 T1-weighted contrast-inhanced images with three kinds of brain tumor are provided in the dataset.The three types of tumor are

1.Glioma 2.Pituitary Tumor 3.Meningioma

dataset

Model Architecture

The first half of the U-net is effectively a typical convolutional neural network like one would construct for an image classification task, with successive rounds of zero-padded ReLU-activated convolutions and ReLU-activated max-pooling layers. Instead of classification occurring at the "bottom" of the U, symmetrical upsampling and convolution layers are used to bring the pixel-wise prediction layer back to the original dimensions of the input image.

Here is the architecture for the 2D U-Net from the original publication mentioned earlier:

u-net-architecture

Here's an example of the correlation between my predictions in a single 2D plane:

Example 1: Example 2:
ground truth prediction

Libraries Used

The code has been tested with the following configuration

  • h5py == 2.10.0
  • keras == 2.3.1
  • scipy == 0.19.0
  • sckit-learn == 0.18.1
  • tensorflow == 2.2.0
  • tgpu == NVIDIA Tesla K80 (Google Colab)

The U-Net was based on this paper: https://arxiv.org/abs/1802.10508

Tips for improving model:

-The feature maps have been reduced so that the model will train using under 12GB of memory. If you have more memory to use, consider increasing the feature maps this will increase the complexity of the model (which will also increase its memory footprint but decrease its execution speed).

-If you choose a subset with larger tensors (e.g. liver or lung), it is recommended to add another maxpooling level (and corresponding upsampling) to the U-Net model. This will of course increase the memory requirements and decrease execution speed, but should give better results because it considers an additional recepetive field/spatial size.

-Consider different loss functions. The default loss function here is a binary_crossentropy. Different loss functions yield different loss curves and may result in better accuracy. However, you may need to adjust the learning_rate and number of epochs to train as you experiment with different loss functions.

-Try exceuting other U-Net architectures in the 2d/model folders.

Owner
Angad Bajwa
Angad Bajwa
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Music source separation is a task to separate audio recordings into individual sources

Music Source Separation Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmeme

Bytedance Inc. 958 Jan 03, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022