MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

Overview

MINIROCKET

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

arXiv:2012.08791 (preprint)

Until recently, the most accurate methods for time series classification were limited by high computational complexity. ROCKET achieves state-of-the-art accuracy with a fraction of the computational expense of most existing methods by transforming input time series using random convolutional kernels, and using the transformed features to train a linear classifier. We reformulate ROCKET into a new method, MINIROCKET, making it up to 75 times faster on larger datasets, and making it almost deterministic (and optionally, with additional computational expense, fully deterministic), while maintaining essentially the same accuracy. Using this method, it is possible to train and test a classifier on all of 109 datasets from the UCR archive to state-of-the-art accuracy in less than 10 minutes. MINIROCKET is significantly faster than any other method of comparable accuracy (including ROCKET), and significantly more accurate than any other method of even roughly-similar computational expense. As such, we suggest that MINIROCKET should now be considered and used as the default variant of ROCKET.

Please cite as:

@article{dempster_etal_2020,
  author  = {Dempster, Angus and Schmidt, Daniel F and Webb, Geoffrey I},
  title   = {{MINIROCKET}: A Very Fast (Almost) Deterministic Transform for Time Series Classification},
  year    = {2020},
  journal = {arXiv:2012.08791}
}

sktime* / Multivariate

MINIROCKET (including a basic multivariate implementation) is also available through sktime. See the examples.

* for larger datasets (10,000+ training examples), the sktime methods should be integrated with SGD or similar as per softmax.py (replace calls to fit(...) and transform(...) from minirocket.py with calls to the relevant sktime methods as appropriate)

Results

* num_training_examples does not include the validation set of 2,048 training examples, but the transform time for the validation set is included in time_training_seconds

Requirements*

  • Python, NumPy, pandas
  • Numba (0.50+)
  • scikit-learn or similar
  • PyTorch or similar (for larger datasets)

* all pre-packaged with or otherwise available through Anaconda

Code

minirocket.py

minirocket_dv.py (MINIROCKETDV)

softmax.py (PyTorch / 10,000+ Training Examples)

minirocket_multivariate.py (equivalent to sktime/MiniRocketMultivariate)

minirocket_variable.py (variable-length input; experimental)

Important Notes

Compilation

The functions in minirocket.py and minirocket_dv.py are compiled by Numba on import, which may take some time. By default, the compiled functions are now cached, so this should only happen once (i.e., on the first import).

Input Data Type

Input data should be of type np.float32. Alternatively, you can change the Numba signatures to accept, e.g., np.float64.

Normalisation

Unlike ROCKET, MINIROCKET does not require the input time series to be normalised. (However, whether or not it makes sense to normalise the input time series may depend on your particular application.)

Examples

MINIROCKET

from minirocket import fit, transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters = fit(X_training)

X_training_transform = transform(X_training, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

MINIROCKETDV

from minirocket_dv import fit_transform
from minirocket import transform
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

parameters, X_training_transform = fit_transform(X_training)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test, parameters)

predictions = classifier.predict(X_test_transform)

PyTorch / 10,000+ Training Examples

from softmax import train, predict

model_etc = train("InsectSound_TRAIN_shuffled.csv", num_classes = 10, training_size = 22952)
# note: 22,952 = 25,000 - 2,048 (validation)

predictions, accuracy = predict("InsectSound_TEST.csv", *model_etc)

Variable-Length Input (Experimental)

from minirocket_variable import fit, transform, filter_by_length
from sklearn.linear_model import RidgeClassifierCV

[...] # load data, etc.

# note:
# * input time series do *not* need to be normalised
# * input data should be np.float32

# special instructions for variable-length input:
# * concatenate variable-length input time series into a single 1d numpy array
# * provide another 1d array with the lengths of each of the input time series
# * input data should be np.float32 (as above); lengths should be np.int32

# optionally, use a different reference length when setting dilation (default is
# the length of the longest time series), and use fit(...) with time series of
# at least this length, e.g.:
# >>> reference_length = X_training_lengths.mean()
# >>> X_training_1d_filtered, X_training_lengths_filtered = \
# >>> filter_by_length(X_training_1d, X_training_lengths, reference_length)
# >>> parameters = fit(X_training_1d_filtered, X_training_lengths_filtered, reference_length)

parameters = fit(X_training_1d, X_training_lengths)

X_training_transform = transform(X_training_1d, X_training_lengths, parameters)

classifier = RidgeClassifierCV(alphas = np.logspace(-3, 3, 10), normalize = True)
classifier.fit(X_training_transform, Y_training)

X_test_transform = transform(X_test_1d, X_test_lengths, parameters)

predictions = classifier.predict(X_test_transform)

Acknowledgements

We thank Professor Eamonn Keogh and all the people who have contributed to the UCR time series classification archive. Figures in our paper showing mean ranks were produced using code from Ismail Fawaz et al. (2019).

🚀 🚀 🚀
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model

SC-GlowTTS: an Efficient Zero-Shot Multi-Speaker Text-To-Speech Model Edresson Casanova, Christopher Shulby, Eren Gölge, Nicolas Michael Müller, Frede

Edresson Casanova 92 Dec 09, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
Implementation of SETR model, Original paper: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.

SETR - Pytorch Since the original paper (Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers.) has no official

zhaohu xing 112 Dec 16, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023