Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Overview

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Getting Started

Install requirements with Anaconda:

conda env create -f environment.yml

Activate the conda environment

conda activate tvae

Install the tvae package

Install the tvae package inside of your conda environment. This allows you to run experiments with the tvae command. At the root of the project directory run (using your environment's pip): pip3 install -e .

If you need help finding your environment's pip, try which python, which should point you to a directory such as .../anaconda3/envs/tvae/bin/ where it will be located.

(Optional) Setup Weights & Biases:

This repository uses Weight & Biases for experiment tracking. By deafult this is set to off. However, if you would like to use this (highly recommended!) functionality, all you have to do is set 'wandb_on': True in the experiment config, and set your account's project and entity names in the tvae/utils/logging.py file.

For more information on making a Weight & Biases account see (creating a weights and biases account) and the associated quickstart guide.

Running an experiment

To evaluate the selectivity of pretrained alexnet (the non-topographic baseline), you can run:

  • tvae --name 'ffa_modeling_pretrained_alexnet'

To train and evaluate the selectivity of the TVAE for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_fc6'

To train and evaluate the selectivity of the the TDANN for objects, faces, bodies, and places, you can run:

  • tvae --name 'ffa_modeling_tdann'

To evaluate the selectivity of the TVAE on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_fc6_functional'

To evaluate the selectivity of the TDANN on abstract catagories (animacy vs. inanimacy):

  • tvae --name 'ffa_modeling_tdann_functional'

These 'functional' experiment files can also be easily modified to test selectivity to big vs. small objects by simply changing the directories of the input images.

Basics of the framework

  • All experiments can be found in tvae/experiments/, and begin with the model specification, followed by the experiment config.

Model Architecutre Options

  • 'mu_init': int, Initalization value for mu parameter
  • 's_dim': int, Dimensionality of the latent space
  • 'k': int, size of the summation kernel used to define the local topographic structure
  • 'group_kernel': tuple of int, defines the size of the kernel used by the grouper, exact definition and relationship to W varies for each experiment.

Training Options

  • 'wandb_on': bool, if True, use weights & biases logging
  • 'lr': float, learning rate
  • 'momentum': float, standard momentum used in SGD
  • 'max_epochs': int, total training epochs
  • 'eval_epochs': int, epochs between evaluation on the test (for MNIST)
  • 'batch_size': int, number of samples per batch
  • 'n_is_samples': int, number of importance samples when computing the log-likelihood on MNIST.
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

XinJingHao 56 Dec 16, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022