[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

Overview

MVSNeRF

Project page | Paper

This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo. Our work present a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis, Moreover, if dense images are captured, our estimated radiance field representation can be easily fine-tuned; this leads to fast per-scene reconstruction.

Pipeline

Installation

Tested on Ubuntu 16.04 + Pytorch 1.8 + Pytorch Lignting 1.3.5

Install environment:

pip install pytorch-lightning, inplace_abn
pip install imageio, pillow, scikit-image, opencv-python, config-argparse, lpips

Training

Please see each subsection for training on different datasets. Available training datasets:

DTU dataset

Data download

Download the preprocessed DTU training data and Depth_raw from original MVSNet repo and unzip. We provide a DTU example, please follow with the example's folder structure.

Training model

Run

CUDA_VISIBLE_DEVICES=$cuda  python train_mvs_nerf_pl.py \
   --expname $exp_name
   --num_epochs 6
   --use_viewdirs \
   --dataset_name dtu \
   --datadir $DTU_DIR

More options refer to the opt.py, training command example:

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_pl.py
    --with_depth  --imgScale_test 1.0 \
    --expname mvs-nerf-is-all-your-need \
    --num_epochs 6 --N_samples 128 --use_viewdirs --batch_size 1024 \
    --dataset_name dtu \
    --datadir path/to/dtu/data \
    --N_vis 6

You may need to add --with_depth if you want to quantity depth during training. --N_vis denotes the validation frequency. --imgScale_test is the downsample ratio during validation, like 0.5. The training process takes about 30h on single RTX 2080Ti for 6 epochs.

Important: please always set batch_size to 1 when you are trining a genelize model, you can enlarge it when fine-tuning.

Checkpoint: a pre-trained checkpint is included in ckpts/mvsnerf-v0.tar.

Evaluation: We also provide a rendering and quantity scipt in renderer.ipynb, and you can also use the run_batch.py if you want to testing or finetuning on different dataset. More results can be found from Here, please check your configuration if your rendering result looks absnormal.

Rendering from the trained model should have result like this:

no-finetuned

Finetuning

Blender

Steps

Data download

Download nerf_synthetic.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name blender --datadir /path/to/nerf_synthetic/lego \
    --expname lego-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0 --white_bkgd  --pad 0 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

LLFF

Steps

Data download

Download nerf_llff_data.zip from here

CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name llff --datadir /path/to/nerf_llff_data/{scene_name} \
    --expname horns-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0  --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

DTU

Steps
CUDA_VISIBLE_DEVICES=0  python train_mvs_nerf_finetuning_pl.py  \
    --dataset_name dtu_ft --datadir /path/to/DTU/mvs_training/dtu/scan1 \
    --expname scan1-ft  --with_rgb_loss  --batch_size 1024  \
    --num_epochs 1 --imgScale_test 1.0   --pad 24 \
    --ckpt ./ckpts/mvsnerf-v0.tar --N_vis 1

Rendering

After training or finetuning, you can render free-viewpoint videos with the renderer-video.ipynb. if you want to use your own data, please using the right hand coordinate system (intrinsic, nearfar and extrinsic either with camera to world or world to camera in opencv format) and modify the rendering scipts.

After 10k iterations (~ 15min), you should have videos like this:

finetuned

Citation

If you find our code or paper helps, please consider citing:

@article{chen2021mvsnerf,
  title={MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo},
  author={Chen, Anpei and Xu, Zexiang and Zhao, Fuqiang and Zhang, Xiaoshuai and Xiang, Fanbo and Yu, Jingyi and Su, Hao},
  journal={arXiv preprint arXiv:2103.15595},
  year={2021}
}

Big thanks to CasMVSNet_pl, our code is partially borrowing from them.

Relevant Works

MVSNet: Depth Inference for Unstructured Multi-view Stereo (ECCV 2018)
Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, Long Quan

Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching (CVPR 2020)
Xiaodong Gu, Zhiwen Fan, Zuozhuo Dai, Siyu Zhu, Feitong Tan, Ping Tan

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV 2020)
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

IBRNet: Learning Multi-View Image-Based Rendering (CVPR 2021)
Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-Brualla, Noah Snavely, Thomas Funkhouser

PixelNeRF: Neural Radiance Fields from One or Few Images (CVPR 2021)
Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa

Owner
Anpei Chen
Anpei Chen
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python.

c is for Camera A 35mm camera, based on the Canonet G-III QL17 rangefinder, simulated in Python. The purpose of this project is to explore and underst

Daniele Procida 146 Sep 26, 2022
Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Adaptive Class Suppression Loss for Long-Tail Object Detection This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppressio

CASIA-IVA-Lab 67 Dec 04, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021)

Multi-task Learning of Order-Consistent Causal Graphs (NeuRIPs 2021) Authors: Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing, Le Song Link to pap

Xinshi Chen 2 Dec 20, 2021
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022