Code for Motion Representations for Articulated Animation paper

Overview

Motion Representations for Articulated Animation

This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulated Animation by Aliaksandr Siarohin, Oliver Woodford, Jian Ren, Menglei Chai and Sergey Tulyakov.

For more qualitiative examples visit our project page.

Example animation

Here is an example of several images produced by our method. In the first column the driving video is shown. For the remaining columns the top image is animated by using motions extracted from the driving.

Screenshot

Installation

We support python3. To install the dependencies run:

pip install -r requirements.txt

YAML configs

There are several configuration files one for each dataset in the config folder named as config/dataset_name.yaml. See config/dataset.yaml to get the description of each parameter.

See description of the parameters in the config/vox256.yaml. We adjust the the configuration to run on 1 V100 GPU, training on 256x256 dataset takes approximatly 2 days.

Pre-trained checkpoints

Checkpoints can be found in checkpoints folder. Checkpoints are large, therefore we use git lsf to store them. Either use git lfs pull or download checkpoints manually from github.

Animation Demo

To run a demo, download a checkpoint and run the following command:

python demo.py  --config config/dataset_name.yaml --driving_video path/to/driving --source_image path/to/source --checkpoint path/to/checkpoint

The result will be stored in result.mp4. To use Animation via Disentaglemet add --mode avd, for standard animation add --mode standard instead.

Colab Demo

We prepared a demo runnable in google-colab, see: demo.ipynb.

Training

To train a model run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --device_ids 0

The code will create a folder in the log directory (each run will create a time-stamped new folder). Checkpoints will be saved to this folder. To check the loss values during training see log.txt. You can also check training data reconstructions in the train-vis subfolder. Then to train Animation via disentaglement (AVD) use:

CUDA_VISIBLE_DEVICES=0 python run.py --checkpoint log/{folder}/cpk.pth --config config/dataset_name.yaml --device_ids 0 --mode train_avd

Where {folder} is the name of the folder created in the previous step. (Note: use backslash '' before space.) This will use the same folder where checkpoint was previously stored. It will create a new checkpoint containing all the previous models and the trained avd_network. You can monitor performance in log file and visualizations in train-vis folder.

Evaluation on video reconstruction

To evaluate the reconstruction performance run:

CUDA_VISIBLE_DEVICES=0 python run.py --config config/dataset_name.yaml --mode reconstruction --checkpoint log/{folder}/cpk.pth

Where {folder} is the name of the folder created in the previous step. (Note: use backslash '' before space.) The reconstruction subfolder will be created in the checkpoint folder. The generated video will be stored to this folder, also generated videos will be stored in png subfolder in loss-less '.png' format for evaluation. Instructions for computing metrics from the paper can be found here.

TED dataset

For obtaining TED dataset run the following commands:

git clone https://github.com/AliaksandrSiarohin/video-preprocessing
cd video-preprocessing
python load_videos.py --metadata ../data/ted384-metadata.csv --format .mp4 --out_folder ../data/TED384-v2 --workers 8 --image_shape 384,384

Training on your own dataset

  1. Resize all the videos to the same size, e.g 256x256, the videos can be in '.gif', '.mp4' or folder with images. We recommend the latter, for each video make a separate folder with all the frames in '.png' format. This format is loss-less, and it has better i/o performance.

  2. Create a folder data/dataset_name with 2 subfolders train and test, put training videos in the train and testing in the test.

  3. Create a config file config/dataset_name.yaml. See description of the parameters in the config/vox256.yaml. Specify the dataset root in dataset_params specify by setting root_dir: data/dataset_name. Adjust other parameters as desired, such as the number of epochs for example. Specify id_sampling: False if you do not want to use id_sampling.

Additional notes

Citation:

@inproceedings{siarohin2021motion,
        author={Siarohin, Aliaksandr and Woodford, Oliver and Ren, Jian and Chai, Menglei and Tulyakov, Sergey},
        title={Motion Representations for Articulated Animation},
        booktitle = {CVPR},
        year = {2021}
}
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
State-to-Distribution (STD) Model

State-to-Distribution (STD) Model In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model fo

<a href=[email protected]"> 2 Apr 07, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Weakly Supervised 3D Object Detection from Point Cloud with Only Image Level Annotation

SCCKTIM Weakly Supervised 3D Object Detection from Point Cloud with Only Image-Level Annotation Our code will be available soon. The class knowledge t

1 Nov 12, 2021
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

Evan 1.3k Jan 02, 2023
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023