Simple embedding based text classifier inspired by fastText, implemented in tensorflow

Overview

FastText in Tensorflow

This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of fastText.

Classification is done by embedding each word, taking the mean embedding over the full text and classifying that using a linear classifier. The embedding is trained with the classifier. You can also specify to use 2+ character ngrams. These ngrams get hashed then embedded in a similar manner to the orginal words. Note, ngrams make training much slower but only make marginal improvements in performance, at least in English.

I may implement skipgram and cbow training later. Or preloading embedding tables.

<< Still WIP >>

You can use Horovod to distribute training across multiple GPUs, on one or multiple servers. See usage section below.

FastText Language Identification

I have added utilities to train a classifier to detect languages, as described in Fast and Accurate Language Identification using FastText

See usage below. It basically works in the same way as default usage.

Implemented:

  • classification of text using word embeddings
  • char ngrams, hashed to n bins
  • training and prediction program
  • serve models on tensorflow serving
  • preprocess facebook format, or text input into tensorflow records

Not Implemented:

  • separate word vector training (though can export embeddings)
  • heirarchical softmax.
  • quantize models (supported by tensorflow, but I haven't tried it yet)

Usage

The following are examples of how to use the applications. Get full help with --help option on any of the programs.

To transform input data into tensorflow Example format:

process_input.py --facebook_input=queries.txt --output_dir=. --ngrams=2,3,4

Or, using a text file with one example per line with an extra file for labels:

process_input.py --text_input=queries.txt --labels=labels.txt --output_dir=.

To train a text classifier:

classifier.py \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

To predict classifications for text, use a saved_model from classifier. classifier.py --export_dir stores a saved model in a numbered directory below export_dir. Pass this directory to the following to use that model for predictions:

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=proba

To export the embedding layer you can export from predictor. Note, this will only be the text embedding, not the ngram embeddings.

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=embedding

Use the provided script to train easily:

train_classifier.sh path-to-data-directory

Language Identification

To implement something similar to the method described in Fast and Accurate Language Identification using FastText you need to download the data:

lang_dataset.sh [datadir]

You can then process the training and validation data using process_input.py and classifier.py as described above.

There is a utility script to do this for you:

train_langdetect.sh datadir

It reaches about 96% accuracy using word embeddings and this increases to nearly 99% when adding --ngrams=2,3,4

Distributed Training

You can run training across multiple GPUs either on one or multiple servers. To do so you need to install MPI and Horovod then add the --horovod option. It runs very close to the GPU multiple in terms of performance. I.e. if you have 2 GPUs on your server, it should run close to 2x the speed.

NUM_GPUS=2
mpirun -np $NUM_GPUS python classifier.py \
  --horovod \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

The training script has this option added: train_classifier.sh.

Tensorflow Serving

As well as using predictor.py to run a saved model to provide predictions, it is easy to serve a saved model using Tensorflow Serving with a client server setup. There is a supplied simple rpc client (predictor_client.py) that provides predictions by using tensorflow server.

First make sure you install the tensorflow serving binaries. Instructions are here.

You then serve the latest saved model by supplying the base export directory where you exported saved models to. This directory will contain the numbered model directories:

tensorflow_model_server --port=9000 --model_base_path=model

Now you can make requests to the server using gRPC calls. An example simple client is provided in predictor_client.py:

predictor_client.py --text="Some text to classify"

Facebook Examples

<< NOT IMPLEMENTED YET >>

You can compare with Facebook's fastText by running similar examples to what's provided in their repository.

./classification_example.sh
./classification_results.sh
Owner
Alan Patterson
Alan Patterson
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Checking fibonacci - Generating the Fibonacci sequence is a classic recursive problem

Fibonaaci Series Generating the Fibonacci sequence is a classic recursive proble

Moureen Caroline O 1 Feb 15, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
Weakly Supervised Segmentation by Tensorflow.

Weakly Supervised Segmentation by Tensorflow. Implements semantic segmentation in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

CHENG-YOU LU 52 Dec 27, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
This project generates news headlines using a Long Short-Term Memory (LSTM) neural network.

News Headlines Generator bunnysaini/Generate-Headlines Goal This project aims to generate news headlines using a Long Short-Term Memory (LSTM) neural

Bunny Saini 1 Jan 24, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022