CoRe: Contrastive Recurrent State-Space Models

Related tags

Deep Learningml-core
Overview

CoRe: Contrastive Recurrent State-Space Models

This code implements the CoRe model and reproduces experimental results found in
Robust Robotic Control from Pixels using Contrastive Recurrent State-Space models
NeurIPS Deep Reinforcement Learning Workshop 2021
Nitish Srivastava, Walter Talbott, Martin Bertran Lopez, Shuangfei Zhai & Joshua M. Susskind
[paper]

cartpole

cheetah

walker

Requirements and Installation

Clone this repository and then execute the following steps. See setup.sh for an example of how to run these steps on a Ubuntu 18.04 machine.

  • Install dependencies.

    apt install -y libgl1-mesa-dev libgl1-mesa-glx libglew-dev \
            libosmesa6-dev software-properties-common net-tools unzip \
            virtualenv wget xpra xserver-xorg-dev libglfw3-dev patchelf xvfb ffmpeg
    
  • Download the DAVIS 2017 dataset. Make sure to select the 2017 TrainVal - Images and Annotations (480p). The training images will be used as distracting backgrounds. The DAVIS directory should be in the same directory as the code. Check that ls ./DAVIS/JPEGImages/480p/... shows 90 video directories.

  • Install MuJoCo 2.1.

    • Download MuJoCo version 2.1 binaries for Linux or macOS.
    • Unzip the downloaded mujoco210 directory into ~/.mujoco/mujoco210.
  • Install MuJoCo 2.0 (For robosuite experiments only).

    • Download MuJoCo version 2.0 binaries for Linux or macOS.
    • Unzip the downloaded directory and move it into ~/.mujoco/.
    • Symlink mujoco200_linux (or mujoco200_macos) to mujoco200.
    ln -s ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200
    
    • Place the license key at ~/.mujoco/mjkey.txt.
    • Add the MuJoCo binaries to LD_LIBRARY_PATH.
    export LD_LIBRARY_PATH=$HOME/.mujoco/mujoco200/bin:$LD_LIBRARY_PATH
    
  • Setup EGL GPU rendering (if a GPU is available).

    • To ensure that the GPU is prioritized over the CPU for EGL rendering
    cp 10_nvidia.json /usr/share/glvnd/egl_vendor.d/
    
    • Create a dummy nvidia directory so that mujoco_py builds the extensions needed for GPU rendering.
    mkdir -p /usr/lib/nvidia-000
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000
    
  • Create a conda environment.

    For Distracting Control Suite

    conda env create -f conda_env.yml
    

    For Robosuite

    conda env create -f conda_env_robosuite.yml
    

Training

  • The CoRe model can be trained on the Distracting Control Suite as follows:

    conda activate core
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/dcs/core.yaml 
    

The training artifacts, including tensorboard logs and videos of validation rollouts will be written in ./artifacts/.

To change the distraction setting, modify the difficulty parameter in configs/dcs/core.yaml. Possible values are ['easy', 'medium', 'hard', 'none', 'hard_bg'].

To change the domain, modify the domain parameter in configs/dcs/core.yaml. Possible values are ['ball_in_cup', 'cartpole', 'cheetah', 'finger', 'reacher', 'walker'].

  • To train on Robosuite (Door Task, Franka Panda Arm)

    • Using RGB image and proprioceptive inputs.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core.yaml
    
    • Using RGB image inputs only.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core_imageonly.yaml
    

Citation

@article{srivastava2021core,
    title={Robust Robotic Control from Pixels using Contrastive Recurrent State-Space Models}, 
    author={Nitish Srivastava and Walter Talbott and Martin Bertran Lopez and Shuangfei Zhai and Josh Susskind},
    journal={NeurIPS Deep Reinforcement Learning Workshop},
    year={2021}
}

License

This code is released under the LICENSE terms.

Owner
Apple
Apple
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
A simple implementation of Kalman filter in single object tracking

kalman-filter-in-single-object-tracking A simple implementation of Kalman filter in single object tracking https://www.bilibili.com/video/BV1Qf4y1J7D4

130 Dec 26, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
CLIP (Contrastive Languageā€“Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts

t5-japanese Codes to pre-train T5 (Text-to-Text Transfer Transformer) models pre-trained on Japanese web texts. The following is a list of models that

Kimio Kuramitsu 1 Dec 13, 2021
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Episodic-memory - Ego4D Episodic Memory Benchmark

Ego4D Episodic Memory Benchmark EGO4D is the world's largest egocentric (first p

3 Feb 18, 2022