Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Overview

Transformers

Arabic licence plate recognition 🚗

  • Solution to the kaggle competition Machathon 3.0.
  • Ranked in the top 6️⃣ at the final evaluation phase.
  • Check our solution now on collab!
  • Check the solution presentation

Preprocessing Pipeline

The schematic of the processor

Approach

Step1: Preprocessing Enhancments on the image.

  • Most images had bad illumination and noise
    • Morphological operations to Maximize Contrast.
    • Gaussian Blur to remove Noise.
  • Thresholding on both Value and Saturation channels.

Step2: Extracting white plate using countours.

  • Get countours and sort based on Area.
  • Polygon Approximation For noisy countours.
  • Convex hull for Concave polygons.
  • 4-Point transformation For difficult camera angles.

Now have numbers in a countor and letters in another.

Step3: Separating characters from white plate using sliding windows.

Can't use countours to get symbols in white plate since Arabic Letter may consist of multiple charachters e.g ت this may consist of 2/3 countours.

Solution

  • Tuned 2 sliding windows, one for letters' white plate, the other for numbers.
    • Variable window width
    • Window height is the white plate height, since arabic characters may consist multiple parts
  • Selecting which window
    • Must have no black pixels on the sides
    • Must have a specific range of black pixels inside
    • For each group of windows the one with max black pixels is selected

Step4: Character Recognition.

  • Training 2 model since Arabic letters and numbers are similar e.g (أ,1) (5, ه)
    • one for classifing only arabic letters.
    • one for classifying arabic numbers.

Project Organization

Scripts applied on images

./Macathon/code/
├── extract_bbx_xml.ipynb                       : Takes directory of images and their bbx data stored in an xml files, and crop the bbxs from the images.
|                                                 The xml file contains licence label(name), xmin, ymin, xmax, ymax of the bbxs in an image.    
├── extract_bbx_txt.ipynb                       : Takes directory of images and their bbx data stored in a txt files, and crop the bbxs from the images.
|                                                 The txt file corresponding to one image may consist of multiple bbxs, each corresponds to a row of xmin,ymin,xmax,ymax for that bbx.
└── crop_right_noise.ipynb                      : Crops an image with some percentage and replace with the cropped image. 

Model versions

./Macathon/code/
└── model.ipynb                      : - The preprocessing and modeling stage, Contains:
                                          - Preprocessing Functions
                                          - Training both classifers
                                          - Prediction and generating the output csv file

Data Folder

./Macathon/data/
├── challenging_images.rar                      : Contains most challenging images collected from the train data. 
├── cropped_letters.zip                         : 28 Subfolders corresponding to the 28 letter in Arabic alphabet.
|                                                 Each subfolder holds images for the letter it's named after, cropped from the train data distribution.
├── cropped_numbers.zip                         : 10 Subfolders for the 10 numbers.
|                                                 Each subfolder holds images for the number it's named after, cropped from the train data distribution.
├── machathon-3.zip                             : The uploaded data found with the kaggle competition.
└── testLetters.zip                             : 200 images labeled from the test data distribution.
                                                  Each image has a corresponding xml file holding the bbxs locations in it.

Contributors

This masterpiece was designed, and implemented by

Hossam
Hossam Saeed
Mostafa wael
Mostafa Wael
Nada Elmasry
Nada Elmasry
Noran Hany
Noran Hany
Owner
Noran Hany
Noran Hany
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021)

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

2 Jan 29, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022