Lipschitz-constrained Unsupervised Skill Discovery

Related tags

Deep LearningLSD
Overview

Lipschitz-constrained Unsupervised Skill Discovery

This repository is the official implementation of

The implementation is based on Unsupervised Skill Discovery with Bottleneck Option Learning and garage.

Visit our project page for more results including videos.

Requirements

Examples

Install requirements:

pip install -r requirements.txt
pip install -e .
pip install -e garaged

Ant with 2-D continuous skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 2 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Ant with 16 discrete skills:

python tests/main.py --run_group EXP --env ant --max_path_length 200 --dim_option 16 --common_lr 0.0001 --seed 0 --normalizer_type ant_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.003 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --eval_plot_axis -50 50 -50 50

Humanoid with 2-D continuous skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 2 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 0 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

Humanoid with 16 discrete skills:

python tests/main.py --run_group EXP --env humanoid --max_path_length 1000 --dim_option 16 --common_lr 0.0003 --seed 0 --normalizer_type humanoid_preset --use_gpu 1 --traj_batch_size 5 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --video_skip_frames 3 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.03 --sac_lr_a -1 --lr_te 0.0001 --lsd_alive_reward 0.03 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4 --sac_replay_buffer 1 --te_max_optimization_epochs 1 --te_trans_optimization_epochs 2

HalfCheetah with 8 discrete skills:

python tests/main.py --run_group EXP --env half_cheetah --max_path_length 200 --dim_option 8 --common_lr 0.0001 --seed 0 --normalizer_type half_cheetah_preset --use_gpu 1 --traj_batch_size 20 --n_parallel 8 --n_epochs_per_eval 5000 --n_thread 1 --model_master_dim 1024 --record_metric_difference 0 --n_epochs_per_tb 100 --n_epochs_per_save 50000 --n_epochs_per_pt_save 5000 --n_epochs_per_pkl_update 1000 --eval_record_video 1 --n_epochs 200001 --spectral_normalization 1 --n_epochs_per_log 50 --discrete 1 --num_random_trajectories 200 --sac_discount 0.99 --alpha 0.01 --sac_lr_a -1 --lr_te 3e-05 --sac_scale_reward 0 --max_optimization_epochs 1 --trans_minibatch_size 2048 --trans_optimization_epochs 4
Owner
Seohong Park
Seohong Park
Neural Magic Eye: Learning to See and Understand the Scene Behind an Autostereogram, arXiv:2012.15692.

Neural Magic Eye Preprint | Project Page | Colab Runtime Official PyTorch implementation of the preprint paper "NeuralMagicEye: Learning to See and Un

Zhengxia Zou 56 Jul 15, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
Xi Dongbo 78 Nov 29, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022