Identifies the faulty wafer before it can be used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

Overview

Retrainable-Faulty-Wafer-Detector

Aim of the project:

In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serves as the substrate for microelectronic devices built in and upon the wafer. The project aims to successfully identify the state of the provided wafer by classifying it between one of the two-class +1 (good, can be used as a substrate) or -1 (bad, the substrate need to be replaced) and then train the model on this data so that it can continuously update itself with the environment and become more generalized with time. In this regard, a training and prediction dataset is provided to build a machine learning classification model, which can predict the wafer quality.

Data Description:

The columns of provided data can be classified into 3 parts: wafer name, sensor values and label. The wafer name contains the batch number of the wafer, whereas the sensor values obtained from the measurement carried out on the wafer. The label column contains two unique values +1 and -1 that identifies if the wafer is good or need to be replaced. Additionally, we also require a schema file, which contains all the relevant information about the training files such as file names, length of date value in the file name, length of time value in the file name, number of columns, name of the columns, and their datatype.

Directory creation:

All the necessary folders were created to effectively separate the files so that the end-user can get easy access to them.

Data Validation:

In this step, we matched our dataset with the provided schema file to match the file names, the number of columns it should contain, their names as well as their datatype. If the files matched with the schema values then they are considered good files on which we can train or predict our model, however, if it didn't match then they are moved to the bad folder. Moreover, we also identify the columns with null values. If all the data in a column is missing then the file is also moved to the bad folder. On the contrary, if only a fraction of data in a column is missing then we initially fill it with NaN and considered it as good data.

Data Insertion in Database:

First, open a connection to the database if it exists otherwise create a new one. A table with the name train_good_raw_dt or pred_good_raw_dt is created in the database, based on the training or prediction process, for inserting the good data files obtained from the data validation step. If the table is already present then new files are inserted in that table as we want training to be done on new as well as old training files. In the end, the data in a stored database is exported as a CSV file, to be used for the model training.

Data Pre-processing and Model Training:

In the training section, first, the data is checked for the NaN values in the columns. If present, impute the NaN values using the KNN imputer. The columns with zero standard deviation were also identified and removed as they don't give any information during model training. A prediction schema was created based on the remained dataset columns. Afterwards, the KMeans algorithm is used to create clusters in the pre-processed data. The optimum number of clusters is selected by plotting the elbow plot, and for the dynamic selection of the number of clusters, we are using the "KneeLocator" function. The idea behind clustering is to implement different algorithms to train data in different clusters. The Kmeans model is trained over pre-processed data and the model is saved for further use in prediction. After clusters are created, we find the best model for each cluster. We are using four algorithms, Random Forest, K-Neighbours, Logistic Regression and XGBoost. For each cluster, both the algorithms are passed with the best parameters derived from GridSearch. We calculate the AUC scores for all the models and select the one with the best score. Similarly, the best model is selected for each cluster. For every cluster, the models are saved so that they can be used in future predictions. In the end, the confusion matrix of the model associated with every cluster is also saved to give the a glance over the performance of the models.

Prediction:

In data prediction, first, the essential directories are created. The data validation, data insertion and data processing steps are similar to the training section. The KMeans model created during training is loaded, and clusters for the pre-processed prediction data is predicted. Based on the cluster number, the respective model is loaded and is used to predict the data for that cluster. Once the prediction is made for all the clusters, the predictions along with the Wafer names are saved in a CSV file at a given location.

Retraining:

After the prediction, the prediction data is merged with the previous training dataset and then the models were retrained on this data using the hyperparameter values obtained from the GridSearch. The cycle repeats with every prediction it does and learns from the newly acquired data, making it more robust.

Deployment:

We will be deploying the model to Heroku Cloud.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
Сервис служит прокси между cервисом регистрации ошибок платформы и системой сбора ошибок Sentry

Sentry Reg Service Сервис служит прокси между Cервисом регистрации ошибок платформы и системой сбора ошибок Sentry. Как развернуть Sentry onpremise. С

Ingvar Vilkman 13 May 24, 2022
jmespath.rs Python binding

rjmespath-py jmespath.rs Python binding.

messense 3 Dec 14, 2022
Weakly-Divisable - Takes an interger and seee if it is weakly divisible by seven

Weakly Divisble Project by Diana Arce-Hernandez, Ryan McAlpine, and Rommel Ravan

Diana Arce-Hernandez 1 Jan 12, 2022
Table (Finnish Taulukko) glued together to transform into hands-free living.

taulukko Table (Finnish Taulukko) glued together to transform into hands-free living. Installation Preferred way to install is as usual (for testing o

Stefan Hagen 2 Dec 14, 2022
HSPICE can not perform Monte Carlo (MC) simulations while considering aging effects

HSPICE can not perform Monte Carlo (MC) simulations while considering aging effects. I developed a python wrapper that automatically performs MC and aging simulations using HPSICE to save engineering

Habib Kazemi 2 Nov 22, 2021
AminoAutoRegFxck/AutoReg For AminoApps.com

AminoAutoRegFxck AminoAutoRegFxck/AutoReg For AminoApps.com Termux apt update -y apt upgrade -y pkg install python git clone https://github.com/LilZev

3 Jan 18, 2022
Anki Cards for the HSK vocabulary Chinese-German

Anki-HanyuShuipingKaoshi Anki Cards for the HSK vocabulary Chinese-German Das Deck baut auf folgenden Quellen auf: China Endecken Wortschatz von wohok

1 Jan 07, 2022
This is a simple leaderboard for 30 days of Google Cloud program for students of ASIET

30daysleaderboard #Hacktoberfest - Please don't make changes in readme file. Only improvement in the project will be accepted. Update - Now if you run

5 Oct 29, 2021
100 Days of Python Programming

100 days of Python Following the initiative of my friend Helber Belmiro, who is almost done with his 100 days of Java, I have decided to start my 100

Henrique Pereira 19 Nov 08, 2021
App and Python library for parsing, writing, and validation of the STAND013 file format.

python-stand013 python-stand013 is a Python app and library for parsing, writing, and validation of the STAND013 file format. Features The following i

Oda 3 Nov 09, 2022
Python script which synchronizes the replica-directoty with the original-one.

directories_synchronizer Python script which synchronizes the replica-directoty with the original-one. Automatically detects all changes when script i

0 Feb 13, 2022
Qt-creator-boost-debugging-helper - Qt Creator Debugging Helper for Boost Library

Go to Tools Options Debugger Locals & Expressions. Paste the script path t

Dmitry Bravikov 2 Apr 22, 2022
Grimoire is a Python library for creating interactive fiction as hyperlinked html.

Grimoire Grimoire is a Python library for creating interactive fiction as hyperlinked html. Installation pip install grimoire-if Usage Check out the

Scott Russell 5 Oct 11, 2022
A 3D Slicer Extension to view data from the flywheel heirarchy

flywheel-connect A 3D Slicer Extension to view, select, and download images from a Flywheel instance to 3D Slicer and storing Slicer outputs back to F

4 Nov 05, 2022
Simple Python API for the Ergo Platform Explorer

Ergo is a "Resilient Platform for Contractual Money." It is designed to be a platform for applications with the main focus to provide an efficient, se

7 Jul 06, 2021
Djangoblog - A blogging site where people can make their accout and write blogs and read other author's blogs

This a blogging site where people can make their accout and write blogs and read other author's blogs.

1 Jan 26, 2022
A Red Team tool for exfiltrating sensitive data from Jira tickets.

Jir-thief This Module will connect to Jira's API using an access token, export to a word .doc, and download the Jira issues that the target has access

Antonio Piazza 82 Dec 12, 2022
Anki cards generator for Leetcode

Leetcode Anki card generator Summary By running this script you'll be able to generate Anki cards with all the leetcode problems. I personally use it

Pavel Safronov 150 Dec 25, 2022
北大选课网2021年春季验证码识别

北大选课网验证码识别 2021 年春季学期 Powered by Elector Quartet (@Rabbit, @xmcp, @SpiritedAwayCN, @gzz) 数据集描述 最初的数据集为 5130 张人工标记的验证码,之后利用早期训练好的模型在选课网上进行自动验证 (自举),又收集

Rabbit 27 Sep 17, 2022
a pull switch (or BYO button) that gets you out of video calls, quick

zoomout a pull switch (or BYO button) that gets you out of video calls, quick. As seen on Twitter System compatibility Tested on macOS Catalina (10.15

Brian Moore 422 Dec 30, 2022