Building house price data pipelines with Apache Beam and Spark on GCP

Overview

house-price-etl-pipeline

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

Basic flow of the ETL pipeline

The ETL pipelines are built with both Apache Beam using Cloud Dataflow and Spark using Cloud Dataproc for loading real estate transactions data into BigQuery, and the data can be visualized in Data Studio. The project also uses Cloud Function to monitor if a new file is uploaded in the GCS bucket and trigger the pipeline automatically.

1. Get Started

The house price data

Actual price registration of real estate transactions data in Taiwan has been released since 2012, which refers to the transaction information includes: position and area of real estate, total price of land and building, parking space related information, etc. We can use the data to observe the changes in house prices over time or predict the house price trend in various regions.

Setup and requirements

Set up on Google Cloud Platform:

Project is created with:

  • Python version: 3.7
  • Apache beam version: 2.33.0
  • Pyspark version: 3.2.0

2. Use a web crawler to download the historical data

Run the web crawler to download historical actual price data in csv format, and upload the files to the Google Cloud Storage bucket.

First, set up the local Python development environment and install packages from requirements.txt:

$ pip install -r requirements.txt

Open crawler.py file, replace YOUR_DIR_PATH with a local directory to store download data, replace projectID with your Google Cloud project ID, and replace GCS_BUCKET_NAME with the name of your Cloud Storage bucket. Then run the web crawler:

$ python crawler.py

3. Build ETL pipelines on GCP

There are two versions of ETL pipelines that read source files from Cloud Storage, apply some transformations and load the data into BigQuery. One of the ETL pipelines based on Apache beam uses Dataflow to process the data for analytics of land transaction. The other ETL pipeline based on Apache Spark uses Dataproc to proccess the data for analytics of building transaction.

Let’s start by opening a session in Google Cloud Shell. Run the following commands to set the project property with your project ID.

$ gcloud config set project [projectID]

Run the pipeline using Dataflow for land data

The file etl_pipeline_beam.py contains the Python code for the etl pipeline with Apache beam. We can upload the file using the Cloud Shell Editor.

Run actual_price_etl.py to create a Dataflow job which runs the DataflowRunner. Notice that we need to set the Cloud Storage location of the staging and template file, and set the region in which the created job should run.

$ python etl_pipeline_beam.py \
--project=projectID \
--region=region \
--runner=DataflowRunner \
--staging_location=gs://BUCKET_NAME/staging \
--temp_location=gs://BUCKET_NAME/temp \
--save_main_session

Run the pipeline using Dataproc for building data

The file etl_pipeline_spark.py contains the Python code for the etl pipeline with Apache Spark. We can upload the file using the Cloud Shell Editor.

Submit etl_pipeline_spark.py to your Dataproc cluster to run the Spark job. We need to set the cluster name, and set the region in which the created job should run. To write data to Bigquery, the jar file of spark-bigquery-connector must be available at runtime.

$ gcloud dataproc jobs submit pyspark etl_pipeline_spark.py \
--cluster=cluster-name \
--region=region \
--jars=gs://spark-lib/bigquery/spark-bigquery-latest_2.12.jar

4. Use a Cloud Function to trigger Cloud Dataflow

Use the Cloud Fucntion to automatically trigger the Dataflow pipeline when a new file arrives in the GCS bucket.

First, we need to create a Dataflow template for runnig the data pipeline with REST API request called by the Cloud Function. The file etl_pipeline_beam_auto.py contains the Python code for the etl pipeline with Apache beam. We can upload the file using the Cloud Shell Editor.

Create a Dataflow template

Use etl_pipeline_beam_auto.py to create a Dataflow template. Note that we need to set the Cloud Storage location of the staging, temporary and template file, and set the region in which the created job should run.

python -m etl_pipeline_beam_auto \
    --runner DataflowRunner \
    --project projectID \
    --region=region \
    --staging_location gs://BUCKET_NAME/staging \
    --temp_location gs://BUCKET_NAME/temp \
    --template_location gs://BUCKET_NAME/template \
    --save_main_session

Create a Cloud Function

Go to the Cloud Function GUI and manually create a function, set Trigger as Cloud Storage, Event Type as Finalize/Create , and choose the GCS bucket which needs to be monitored. Next, write the function itself, use the code in main.py file. Note that the user defined parameter input is passed to the Dataflow pipeline job. Finally, click on depoly and now your function is ready to execute and start the Dataflow pipeline when a file is uploaded in your bucket.

Results

When each ETL pipeline is completed and succeeded, navigating to BigQuery to verify that the data is successfully loaded in the table.

BigQuery - land_data table

Now the data is ready for analytics and reporting. Here, we calculate average price by year in BigQuery, and visualize the results in Data Studio.

Data Studio - Average land price by year in Yilan County

Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Data-sets from the survey and analysis

bachelor-thesis "Umfragewerte.xlsx" contains the orginal survey results. "umfrage_alle.csv" contains the survey results but one participant is cancele

1 Jan 26, 2022
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

DataHerb 4 Feb 11, 2022
Jupyter notebooks for the book "The Elements of Statistical Learning".

This repository contains Jupyter notebooks implementing the algorithms found in the book and summary of the textbook.

Madiyar 369 Dec 30, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
Python implementation of Principal Component Analysis

Principal Component Analysis Principal Component Analysis (PCA) is a dimension-reduction algorithm. The idea is to use the singular value decompositio

Ignacio Darago 1 Nov 06, 2021
📊 Python Flask game that consolidates data from Nasdaq, allowing the user to practice buying and selling stocks.

Web Trader Web Trader is a trading website that consolidates data from Nasdaq, allowing the user to search up the ticker symbol and price of any stock

Paulina Khew 21 Aug 30, 2022
Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which he recommends to buy. We will use this data to build a portfolio

Backtesting the "Cramer Effect" & Recommendations from Cramer Recommendations from Cramer: On the show Mad-Money (CNBC) Jim Cramer picks stocks which

Gábor Vecsei 12 Aug 30, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Theano

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022