An OpenAI Gym environment for Super Mario Bros

Overview

gym-super-mario-bros

BuildStatus PackageVersion PythonVersion Stable Format License

Mario

An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) using the nes-py emulator.

Installation

The preferred installation of gym-super-mario-bros is from pip:

pip install gym-super-mario-bros

Usage

Python

You must import gym_super_mario_bros before trying to make an environment. This is because gym environments are registered at runtime. By default, gym_super_mario_bros environments use the full NES action space of 256 discrete actions. To contstrain this, gym_super_mario_bros.actions provides three actions lists (RIGHT_ONLY, SIMPLE_MOVEMENT, and COMPLEX_MOVEMENT) for the nes_py.wrappers.JoypadSpace wrapper. See gym_super_mario_bros/actions.py for a breakdown of the legal actions in each of these three lists.

from nes_py.wrappers import JoypadSpace
import gym_super_mario_bros
from gym_super_mario_bros.actions import SIMPLE_MOVEMENT
env = gym_super_mario_bros.make('SuperMarioBros-v0')
env = JoypadSpace(env, SIMPLE_MOVEMENT)

done = True
for step in range(5000):
    if done:
        state = env.reset()
    state, reward, done, info = env.step(env.action_space.sample())
    env.render()

env.close()

NOTE: gym_super_mario_bros.make is just an alias to gym.make for convenience.

NOTE: remove calls to render in training code for a nontrivial speedup.

Command Line

gym_super_mario_bros features a command line interface for playing environments using either the keyboard, or uniform random movement.

gym_super_mario_bros -e <the environment ID to play> -m <`human` or `random`>

NOTE: by default, -e is set to SuperMarioBros-v0 and -m is set to human.

Environments

These environments allow 3 attempts (lives) to make it through the 32 stages in the game. The environments only send reward-able game-play frames to agents; No cut-scenes, loading screens, etc. are sent from the NES emulator to an agent nor can an agent perform actions during these instances. If a cut-scene is not able to be skipped by hacking the NES's RAM, the environment will lock the Python process until the emulator is ready for the next action.

Environment Game ROM Screenshot
SuperMarioBros-v0 SMB standard
SuperMarioBros-v1 SMB downsample
SuperMarioBros-v2 SMB pixel
SuperMarioBros-v3 SMB rectangle
SuperMarioBros2-v0 SMB2 standard
SuperMarioBros2-v1 SMB2 downsample

Individual Stages

These environments allow a single attempt (life) to make it through a single stage of the game.

Use the template

SuperMarioBros-<world>-<stage>-v<version>

where:

  • <world> is a number in {1, 2, 3, 4, 5, 6, 7, 8} indicating the world
  • <stage> is a number in {1, 2, 3, 4} indicating the stage within a world
  • <version> is a number in {0, 1, 2, 3} specifying the ROM mode to use
    • 0: standard ROM
    • 1: downsampled ROM
    • 2: pixel ROM
    • 3: rectangle ROM

For example, to play 4-2 on the downsampled ROM, you would use the environment id SuperMarioBros-4-2-v1.

Random Stage Selection

The random stage selection environment randomly selects a stage and allows a single attempt to clear it. Upon a death and subsequent call to reset, the environment randomly selects a new stage. This is only available for the standard Super Mario Bros. game, not Lost Levels (at the moment). To use these environments, append RandomStages to the SuperMarioBros id. For example, to use the standard ROM with random stage selection use SuperMarioBrosRandomStages-v0. To seed the random stage selection use the seed method of the env, i.e., env.seed(1), before any calls to reset.

Step

Info about the rewards and info returned by the step method.

Reward Function

The reward function assumes the objective of the game is to move as far right as possible (increase the agent's x value), as fast as possible, without dying. To model this game, three separate variables compose the reward:

  1. v: the difference in agent x values between states
    • in this case this is instantaneous velocity for the given step
    • v = x1 - x0
      • x0 is the x position before the step
      • x1 is the x position after the step
    • moving right ⇔ v > 0
    • moving left ⇔ v < 0
    • not moving ⇔ v = 0
  2. c: the difference in the game clock between frames
    • the penalty prevents the agent from standing still
    • c = c0 - c1
      • c0 is the clock reading before the step
      • c1 is the clock reading after the step
    • no clock tick ⇔ c = 0
    • clock tick ⇔ c < 0
  3. d: a death penalty that penalizes the agent for dying in a state
    • this penalty encourages the agent to avoid death
    • alive ⇔ d = 0
    • dead ⇔ d = -15

r = v + c + d

The reward is clipped into the range (-15, 15).

info dictionary

The info dictionary returned by the step method contains the following keys:

Key Type Description
coins int The number of collected coins
flag_get bool True if Mario reached a flag or ax
life int The number of lives left, i.e., {3, 2, 1}
score int The cumulative in-game score
stage int The current stage, i.e., {1, ..., 4}
status str Mario's status, i.e., {'small', 'tall', 'fireball'}
time int The time left on the clock
world int The current world, i.e., {1, ..., 8}
x_pos int Mario's x position in the stage (from the left)
y_pos int Mario's y position in the stage (from the bottom)

Citation

Please cite gym-super-mario-bros if you use it in your research.

@misc{gym-super-mario-bros,
  author = {Christian Kauten},
  howpublished = {GitHub},
  title = {{S}uper {M}ario {B}ros for {O}pen{AI} {G}ym},
  URL = {https://github.com/Kautenja/gym-super-mario-bros},
  year = {2018},
}
Owner
Andrew Stelmach
Andrew Stelmach
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation

IEGAN — Official PyTorch Implementation Independent Encoder for Deep Hierarchical Unsupervised Image-to-Image Translation Independent Encoder for Deep

30 Nov 05, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Deep Reinforcement Learning for Keras.

Deep Reinforcement Learning for Keras What is it? keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seaml

Keras-RL 0 Dec 15, 2022
A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation(DANN), support Office-31 and Office-Home dataset

DANN A PyTorch implementation for Unsupervised Domain Adaptation by Backpropagation Prerequisites Linux or OSX NVIDIA GPU + CUDA (may CuDNN) and corre

8 Apr 16, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
Building Ellee — A GPT-3 and Computer Vision Powered Talking Robotic Teddy Bear With Human Level Conversation Intelligence

Using an object detection and facial recognition system built on MobileNetSSDV2 and Dlib and running on an NVIDIA Jetson Nano, a GPT-3 model, Google Speech Recognition, Amazon Polly and servo motors,

24 Oct 26, 2022