Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

Overview
alternate text

3D Convolutional Neural Networks for Speaker Verification - Official Project Page

https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat https://badges.frapsoft.com/os/v2/open-source.svg?v=102 https://img.shields.io/twitter/follow/amirsinatorfi.svg?label=Follow&style=social

Table of Contents

This repository contains the Pytorch code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well.

The code has been developed using Pytorch. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

readme_images/conv_gif.gif

Citation

If you used this code, please kindly consider citing the following paper:

@article{torfi2017text,
  title={Text-independent speaker verification using 3d convolutional neural networks},
  author={Torfi, Amirsina and Nasrabadi, Nasser M and Dawson, Jeremy},
  journal={arXiv preprint arXiv:1705.09422},
  year={2017}
}

General View

We leveraged 3D convolutional architecture for creating the speaker model in order to simultaneously capturing the speech-related and temporal information from the speakers' utterances.

Speaker Verification Protocol(SVP)

In this work, a 3D Convolutional Neural Network (3D-CNN) architecture has been utilized for text-independent speaker verification in three phases.

1. At the development phase, a CNN is trained to classify speakers at the utterance-level.

2. In the enrollment stage, the trained network is utilized to directly create a speaker model for each speaker based on the extracted features.

3. Finally, in the evaluation phase, the extracted features from the test utterance will be compared to the stored speaker model to verify the claimed identity.

The aforementioned three phases are usually considered as the SV protocol. One of the main challenges is the creation of the speaker models. Previously-reported approaches create speaker models based on averaging the extracted features from utterances of the speaker, which is known as the d-vector system.

How to leverage 3D Convolutional Neural Networks?

In our paper, we propose the implementation of 3D-CNNs for direct speaker model creation in which, for both development and enrollment phases, an identical number of speaker utterances is fed to the network for representing the spoken utterances and creation of the speaker model. This leads to simultaneously capturing the speaker-related information and building a more robust system to cope with within-speaker variation. We demonstrate that the proposed method significantly outperforms the d-vector verification system.

Dataset

Unlike the Original Implementaion, here we used the VoxCeleb publicy available dataset. The dataset contains annotated audio files. For Speaker Verification, the parts of the audio associated with the subject of interest, however, must be extracted from the raw audio files.

Three steps should be taken to prepare the data after downloading the data associated files.

  1. Extract the specific audio part that the subject of interest is speaking.[extract_audio.py]
  2. Create train/test phase.[create_phases.py]
  3. Voice Activity Detection to remove the silence. [vad.py]

Creating the dataset object, necessary preprocessing and feature extraction will be performed in the following data class:

1000, "Bad file!" # Add to list if file is OK! list_files.append(x.strip()) except: print('file %s is corrupted!' % sound_file_path) # Save the correct and healthy sound files to a list. self.sound_files = list_files def __len__(self): return len(self.sound_files) def __getitem__(self, idx): # Get the sound file path sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1] ">
class AudioDataset():
"""Audio dataset."""

    def __init__(self, files_path, audio_dir, transform=None):
        """
        Args:
            files_path (string): Path to the .txt file which the address of files are saved in it.
            root_dir (string): Directory with all the audio files.
            transform (callable, optional): Optional transform to be applied
                on a sample.
        """

        # self.sound_files = [x.strip() for x in content]
        self.audio_dir = audio_dir
        self.transform = transform

        # Open the .txt file and create a list from each line.
        with open(files_path, 'r') as f:
            content = f.readlines()
        # you may also want to remove whitespace characters like `\n` at the end of each line
        list_files = []
        for x in content:
            sound_file_path = os.path.join(self.audio_dir, x.strip().split()[1])
            try:
                with open(sound_file_path, 'rb') as f:
                    riff_size, _ = wav._read_riff_chunk(f)
                    file_size = os.path.getsize(sound_file_path)

                # Assertion error.
                assert riff_size == file_size and os.path.getsize(sound_file_path) > 1000, "Bad file!"

                # Add to list if file is OK!
                list_files.append(x.strip())
            except:
                print('file %s is corrupted!' % sound_file_path)

        # Save the correct and healthy sound files to a list.
        self.sound_files = list_files

    def __len__(self):
        return len(self.sound_files)

    def __getitem__(self, idx):
        # Get the sound file path
        sound_file_path = os.path.join(self.audio_dir, self.sound_files[idx].split()[1]

Code Implementation

The input pipeline must be provided by the user. Please refer to ``code/0-input/input_feature.py`` for having an idea about how the input pipeline works.

Input Pipeline for this work

readme_images/Speech_GIF.gif

The MFCC features can be used as the data representation of the spoken utterances at the frame level. However, a drawback is their non-local characteristics due to the last DCT 1 operation for generating MFCCs. This operation disturbs the locality property and is in contrast with the local characteristics of the convolutional operations. The employed approach in this work is to use the log-energies, which we call MFECs. The extraction of MFECs is similar to MFCCs by discarding the DCT operation. The temporal features are overlapping 20ms windows with the stride of 10ms, which are used for the generation of spectrum features. From a 0.8- second sound sample, 80 temporal feature sets (each forms a 40 MFEC features) can be obtained which form the input speech feature map. Each input feature map has the dimen- sionality of ζ × 80 × 40 which is formed from 80 input frames and their corresponding spectral features, where ζ is the number of utterances used in modeling the speaker during the development and enrollment stages.

The speech features have been extracted using [SpeechPy] package.

Implementation of 3D Convolutional Operation

The following script has been used for our implementation:

self.conv11 = nn.Conv3d(1, 16, (4, 9, 9), stride=(1, 2, 1))
self.conv11_bn = nn.BatchNorm3d(16)
self.conv11_activation = torch.nn.PReLU()
self.conv12 = nn.Conv3d(16, 16, (4, 9, 9), stride=(1, 1, 1))
self.conv12_bn = nn.BatchNorm3d(16)
self.conv12_activation = torch.nn.PReLU()
self.conv21 = nn.Conv3d(16, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv21_bn = nn.BatchNorm3d(32)
self.conv21_activation = torch.nn.PReLU()
self.conv22 = nn.Conv3d(32, 32, (3, 7, 7), stride=(1, 1, 1))
self.conv22_bn = nn.BatchNorm3d(32)
self.conv22_activation = torch.nn.PReLU()
self.conv31 = nn.Conv3d(32, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv31_bn = nn.BatchNorm3d(64)
self.conv31_activation = torch.nn.PReLU()
self.conv32 = nn.Conv3d(64, 64, (3, 5, 5), stride=(1, 1, 1))
self.conv32_bn = nn.BatchNorm3d(64)
self.conv32_activation = torch.nn.PReLU()
self.conv41 = nn.Conv3d(64, 128, (3, 3, 3), stride=(1, 1, 1))
self.conv41_bn = nn.BatchNorm3d(128)
self.conv41_activation = torch.nn.PReLU()

As it can be seen, slim.conv2d has been used. However, simply by using 3D kernels as [k_x, k_y, k_z] and stride=[a, b, c] it can be turned into a 3D-conv operation. The base of the slim.conv2d is tf.contrib.layers.conv2d. Please refer to official Documentation for further details.

License

The license is as follows:

APPENDIX: How to apply the Apache License to your work.

   To apply the Apache License to your work, attach the following
   boilerplate notice, with the fields enclosed by brackets "{}"
   replaced with your own identifying information. (Don't include the brackets!)  The text should be enclosed in the appropriate
   comment syntax for the file format. We also recommend that a
   file or class name and description of purpose be included on the
   same "printed page" as the copyright notice for easier
   identification within third-party archives.

Copyright {2017} {Amirsina Torfi}

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Please refer to LICENSE file for further detail.

Contribution

We are looking forward to your kind feedback. Please help us to improve the code and make our work better. For contribution, please create the pull request and we will investigate it promptly. Once again, we appreciate your feedback and code inspections.

references

[SpeechPy] Amirsina Torfi. 2017. astorfi/speech_feature_extraction: SpeechPy. Zenodo. doi:10.5281/zenodo.810392.
Owner
Amirsina Torfi
PhD & Developer working on Deep Learning, Computer Vision & NLP
Amirsina Torfi
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022