Fast scatter density plots for Matplotlib

Overview

Azure Status Coverage Status

About

Plotting millions of points can be slow. Real slow... 😴

So why not use density maps? ⚑

The mpl-scatter-density mini-package provides functionality to make it easy to make your own scatter density maps, both for interactive and non-interactive use. Fast. The following animation shows real-time interactive use with 10 million points, but interactive performance is still good even with 100 million points (and more if you have enough RAM).

Demo of mpl-scatter-density with NY taxi data

When panning, the density map is shown at a lower resolution to keep things responsive (though this is customizable).

To install, simply do:

pip install mpl-scatter-density

This package requires Numpy, Matplotlib, and fast-histogram - these will be installed by pip if they are missing. Both Python 2.7 and Python 3.x are supported, and the package should work correctly on Linux, MacOS X, and Windows.

Usage

There are two main ways to use mpl-scatter-density, both of which are explained below.

scatter_density method

The easiest way to use this package is to simply import mpl_scatter_density, then create Matplotlib axes as usual but adding a projection='scatter_density' option (if your reaction is 'wait, what?', see here). This will return a ScatterDensityAxes instance that has a scatter_density method in addition to all the usual methods (scatter, plot, etc.).

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Generate fake data

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

# Make the plot - note that for the projection option to work, the
# mpl_scatter_density module has to be imported above.

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian.png')

Which gives:

Result from the example script

The scatter_density method takes the same options as imshow (for example cmap, alpha, norm, etc.), but also takes the following optional arguments:

  • dpi: this is an integer that is used to determine the resolution of the density map. By default, this is 72, but you can change it as needed, or set it to None to use the default for the Matplotlib backend you are using.
  • downres_factor: this is an integer that is used to determine how much to downsample the density map when panning in interactive mode. Set this to 1 if you don't want any downsampling.
  • color: this can be set to any valid matplotlib color, and will be used to automatically make a monochromatic colormap based on this color. The colormap will fade to transparent, which means that this mode is ideal when showing multiple density maps together.

Here is an example of using the color option:

import numpy as np
import matplotlib.pyplot as plt
import mpl_scatter_density  # noqa

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')

n = 10000000

x = np.random.normal(0.5, 0.3, n)
y = np.random.normal(0.5, 0.3, n)

ax.scatter_density(x, y, color='red')

x = np.random.normal(1.0, 0.2, n)
y = np.random.normal(0.6, 0.2, n)

ax.scatter_density(x, y, color='blue')

ax.set_xlim(-0.5, 1.5)
ax.set_ylim(-0.5, 1.5)

fig.savefig('double.png')

Which produces the following output:

Result from the example script

ScatterDensityArtist

If you are a more experienced Matplotlib user, you might want to use the ScatterDensityArtist directly (this is used behind the scenes in the above example). To use this, initialize the ScatterDensityArtist with the axes as first argument, followed by any arguments you would have passed to scatter_density above (you can also take a look at the docstring for ScatterDensityArtist). You should then add the artist to the axes:

from mpl_scatter_density import ScatterDensityArtist
a = ScatterDensityArtist(ax, x, y)
ax.add_artist(a)

Advanced

Non-linear stretches for high dynamic range plots

In some cases, your density map might have a high dynamic range, and you might therefore want to show the log of the counts rather than the counts. You can do this by passing a matplotlib.colors.Normalize object to the norm argument in the same wasy as for imshow. For example, the astropy package includes a nice framework for making such a Normalize object for different functions. The following example shows how to show the density map on a log scale:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

# Make the norm object to define the image stretch
from astropy.visualization import LogStretch
from astropy.visualization.mpl_normalize import ImageNormalize
norm = ImageNormalize(vmin=0., vmax=1000, stretch=LogStretch())

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, norm=norm)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.savefig('gaussian_log.png')

Which produces the following output:

Result from the example script

Adding a colorbar

You can show a colorbar in the same way as you would for an image - the following example shows how to do it:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
density = ax.scatter_density(x, y)
ax.set_xlim(-5, 10)
ax.set_ylim(-5, 10)
fig.colorbar(density, label='Number of points per pixel')
fig.savefig('gaussian_colorbar.png')

Which produces the following output:

Result from the example script

Color-coding 'markers' with individual values

In the same way that a 1-D array of values can be passed to Matplotlib's scatter function/method, a 1-D array of values can be passed to scatter_density using the c= argument:

import numpy as np
import mpl_scatter_density
import matplotlib.pyplot as plt

N = 10000000
x = np.random.normal(4, 2, N)
y = np.random.normal(3, 1, N)
c = x - y + np.random.normal(0, 5, N)

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='scatter_density')
ax.scatter_density(x, y, c=c, vmin=-10, vmax=+10, cmap=plt.cm.RdYlBu)
ax.set_xlim(-5, 13)
ax.set_ylim(-5, 11)
fig.savefig('gaussian_color_coded.png')

Which produces the following output:

Result from the example script

Note that to keep performance as good as possible, the values from the c attribute are averaged inside each pixel of the density map, then the colormap is applied. This is a little different to what scatter would converge to in the limit of many points (since in that case it would apply the color to all the markers than average the colors).

Q&A

Isn't this basically the same as datashader?

This follows the same ideas as datashader, but the aim of mpl-scatter-density is specifically to bring datashader-like functionality to Matplotlib users. Furthermore, mpl-scatter-density is intended to be very easy to install - for example it can be installed with pip. But if you have datashader installed and regularly use bokeh, mpl-scatter-density won't do much for you. Note that if you are interested in datashader and Matplotlib together, there is a work in progress (pull request) by @tacaswell to create a Matplotlib artist similar to that in this package but powered by datashader.

What about vaex?

Vaex is a powerful package to visualize large datasets on N-dimensional grids, and therefore has some functionality that overlaps with what is here. However, the aim of mpl-scatter-density is just to provide a lightweight solution to make it easy for users already using Matplotlib to add scatter density maps to their plots rather than provide a complete environment for data visualization. I highly recommend that you take a look at Vaex and determine which approach is right for you!

Why on earth have you defined scatter_density as a projection?

If you are a Matplotlib developer: I truly am sorry for distorting the intended purpose of projection 😊 . But you have to admit that it's a pretty convenient way to have users get a custom Axes sub-class even if it has nothing to do with actual projection!

Where do you see this going?

There are a number of things we could add to this package, for example a way to plot density maps as contours, or a way to color code each point by a third quantity and have that reflected in the density map. If you have ideas, please open issues, and even better contribute a pull request! πŸ˜„

Can I contribute?

I'm glad you asked - of course you are very welcome to contribute! If you have some ideas, you can open issues or create a pull request directly. Even if you don't have time to contribute actual code changes, I would love to hear from you if you are having issues using this package.

[![Build Status](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_apis/build/status/astrofrog.mpl-scatter-density?branchName=master)](https://dev.azure.com/thomasrobitaille/mpl-scatter-density/_build/latest?definitionId=17&branchName=master)

Running tests

To run the tests, you will need pytest and the pytest-mpl plugin. You can then run the tests with:

pytest mpl_scatter_density --mpl
Owner
Thomas Robitaille
Thomas Robitaille
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Geocoding library for Python.

geopy geopy is a Python client for several popular geocoding web services. geopy makes it easy for Python developers to locate the coordinates of addr

geopy 3.8k Jan 02, 2023
Cartopy - a cartographic python library with matplotlib support

Cartopy is a Python package designed to make drawing maps for data analysis and visualisation easy. Table of contents Overview Get in touch License an

1.2k Jan 01, 2023
A simple, fast, extensible python library for data validation.

Validr A simple, fast, extensible python library for data validation. Simple and readable schema 10X faster than jsonschema, 40X faster than schematic

kk 209 Sep 19, 2022
This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and much more using Kibana Dashboard with Elasticsearch.

System Stats Visualizer This project is created to visualize the system statistics such as memory usage, CPU usage, memory accessible by process and m

Vishal Teotia 5 Feb 06, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
CPG represent!

CoolPandasGroup CPG represent! Arianna Brandon Enne Luan Tracie Project requirements: use Pandas to clean and format datasets use Jupyter Notebook to

Enne 3 Feb 07, 2022
πŸ§‡ Make Waffle Charts in Python.

PyWaffle PyWaffle is an open source, MIT-licensed Python package for plotting waffle charts. It provides a Figure constructor class Waffle, which coul

Guangyang Li 528 Jan 02, 2023
Visualize the training curve from the *.csv file (tensorboard format).

Training-Curve-Vis Visualize the training curve from the *.csv file (tensorboard format). Feature Custom labels Curve smoothing Support for multiple c

Luckky 7 Feb 23, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 04, 2023
Lime: Explaining the predictions of any machine learning classifier

lime This project is about explaining what machine learning classifiers (or models) are doing. At the moment, we support explaining individual predict

Marco Tulio Correia Ribeiro 10.3k Dec 29, 2022
Use Perspective to create the chart for the trader’s dashboard

Task Overview | Installation Instructions | Link to Module 3 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 22, 2022
Define fortify and autoplot functions to allow ggplot2 to handle some popular R packages.

ggfortify This package offers fortify and autoplot functions to allow automatic ggplot2 to visualize statistical result of popular R packages. Check o

Sinhrks 504 Dec 23, 2022
The visual framework is designed on the idea of module and implemented by mixin method

Visual Framework The visual framework is designed on the idea of module and implemented by mixin method. Its biggest feature is the mixins module whic

LEFTeyes 9 Sep 19, 2022
Flame Graphs visualize profiled code

Flame Graphs visualize profiled code

Brendan Gregg 14.1k Jan 03, 2023
Compute and visualise incidence (reworking of the original incidence package)

incidence2 incidence2 is an R package that implements functions and classes to compute, handle and visualise incidence from linelist data. It refocuss

15 Nov 22, 2022
LinkedIn connections analyzer

LinkedIn Connections Analyzer πŸ”— https://linkedin-analzyer.herokuapp.com Hey hey πŸ‘‹ , welcome to my LinkedIn connections analyzer. I recently found ou

Okkar Min 5 Sep 13, 2022
Visualise top-rated GitHub repositories in a barchart by keyword

This python script was written for simple purpose -- to visualise top-rated GitHub repositories in a barchart by keyword. Script generates html-page with barchart and information about repository own

Cur1iosity 2 Feb 07, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023