[email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation | PythonRepo" /> [email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation | PythonRepo">

Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Related tags

Deep LearningMoKGE
Overview

Diversifying Commonsense Reasoning Generation on Knowledge Graph

Introduction

-- This is the pytorch implementation of our ACL 2022 paper "Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts" [PDF]. In this paper, we propose MoKGE, a novel method that diversifies the generative commonsense reasoning by a mixture of expert (MoE) strategy on knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs.

Create an environment

transformers==3.3.1
torch==1.7.0
nltk==3.4.5
networkx==2.1
spacy==2.2.1
torch-scatter==2.0.5+${CUDA}
psutil==5.9.0

-- For torch-scatter, ${CUDA} should be replaced by either cu101 cu102 cu110 or cu111 depending on your PyTorch installation. For more information check here.

-- A docker environment could be downloaded from wenhaoyu97/divgen:5.0

We summarize some common environment installation problems and solutions here.

Preprocess the data

-- Extract English ConceptNet and build graph.

cd data
wget https://s3.amazonaws.com/conceptnet/downloads/2018/edges/conceptnet-assertions-5.6.0.csv.gz
gzip -d conceptnet-assertions-5.6.0.csv.gz
cd ../preprocess
python extract_cpnet.py
python graph_construction.py

-- Preprocess multi-hop relational paths. Set $DATA to either anlg or eg.

export DATA=eg
python ground_concepts_simple.py $DATA
python find_neighbours.py $DATA
python filter_triple.py $DATA

Run Baseline

Baseline Name Run Baseline Model Venue and Reference
Truncated Sampling bash scripts/TruncatedSampling.sh Fan et al., ACL 2018 [PDF]
Nucleus Sampling bash scripts/NucleusSampling.sh Holtzman et al., ICLR 2020 [PDF]
Variational AutoEncoder bash scripts/VariationalAutoEncoder.sh Gupta et al., AAAI 2018 [PDF]
Mixture of Experts
(MoE-embed)
bash scripts/MixtureOfExpertCho.sh Cho et al., EMNLP 2019 [PDF]
Mixture of Experts
(MoE-prompt)
bash scripts/MixtureOfExpertShen.sh Shen et al., ICML 2019 [PDF]

Run MoKGE

-- Independently parameterizing each expert may exacerbate overfitting since the number of parameters increases linearly with the number of experts. We follow the parameter sharing schema in Cho et al., (2019); Shen et al., (2019) to avoid this issue. This only requires a negligible increase in parameters over the baseline model that does not uses MoE. Speficially, Cho et al., (2019) added a unique expert embedding to each input token, while Shen et al., (2019) added an expert prefix token before the input text sequence.

-- MoKGE-embed (Cho et al.,) bash scripts/KGMixtureOfExpertCho.sh

-- MoKGE-prompt (shen et al.,) bash scripts/KGMixtureOfExpertShen.sh

Citation

@inproceedings{yu2022diversifying,
  title={Diversifying Content Generation for Commonsense Reasoning with Mixture of Knowledge Graph Experts},
  author={Yu, Wenhao and Zhu, Chenguang and Qin, Lianhui and Zhang, Zhihan and Zhao, Tong and Jiang, Meng},
  booktitle={Findings of Annual Meeting of the Association for Computational Linguistics (ACL)},
  year={2022}
}

Please kindly cite our paper if you find this paper and the codes helpful.

Acknowledgements

Many thanks to the Github repository of Transformers, KagNet and MultiGen.

Part of our codes are modified based on their codes.

Owner
DM2 Lab @ ND
Data Mining towards Decision Making Lab at University of Notre Dame
DM2 Lab @ ND
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 EAMLP will come soon Jitto

MenghaoGuo 357 Dec 11, 2022
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

docTR by Mindee (Document Text Recognition) - a seamless, high-performing & accessible library for OCR-related tasks powered by Deep Learning.

Mindee 1.5k Jan 01, 2023
Python Blood Vessel Topology Analysis

Python Blood Vessel Topology Analysis This repository is not being updated anymore. The new version of PyVesTo is called PyVaNe and is available at ht

6 Nov 15, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval

BiDR Repo for WWW 2022 paper: Progressively Optimized Bi-Granular Document Representation for Scalable Embedding Based Retrieval. Requirements torch==

Microsoft 11 Oct 20, 2022
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022