An AutoML survey focusing on practical systems.

Overview

AutoML Survey

An (in-progress) AutoML survey focusing on practical systems.


This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow daily. Hence, we cannot hope to provide a comprehensive description of every interesting idea or approach available. Thus, we decided to focus on practical AutoML systems, and spread outwards from there into the methodologies and theoretical concepts that power these systems. Our intuition is that, even though there are a lot of interesting ideas still in research stage, the most mature and battle-tested concepts are those that have been succesfully applied to construct practical AutoML systems.

To this end, we are building a database of qualitative criteria for all AutoML systems we've heard of. We define an AutoML system as a software project that can be used by non-experts in machine learning to build effective ML pipelines on at least some common domains and tasks. It doesn't matter if its open-source and/or commercial, a library or an application with a GUI, or a cloud service. What matters is that it is intended to be used in practice, as opposed to, say, a reference implementation of a novel AutoML strategy in a Jupyter Notebook.

Features of an AutoML system

For each of them we are creating a system card that describes, in our opinion, the most relevant features of the system, both from the scientific and the engineering points of view. To describe an AutoML system, we use a YAML-based definition. Most of the features are self-explanatory.

💡 Check data/systems/_template.yml for a starting template.

Basic information

Characteristics about the basic information of the system as a software product.

  • name (str): Name of the system.
  • description (str): A short (2-4 sentences) description of the sytem.
  • website (str): The URL of the main website or documentation.
  • open_source (bool): Whether the system is open-source.
  • institutions (list[str]): List of businesses or academic institutions that directly support the development of the system, and/or hold intellectual property over it.
  • repository (str): If it's open-source, link of a public source code repository, otherwise null.
  • license (str): If it's open-source, a license key, otherwise null.
  • references (list[str]): List of links to relevant papers, preferably DOIs or other universal handlers, but can also be links to arxiv.org or other repositories sorted by most relevant papers, not date.

User interfaces

Characteristics describing how the users interact with the system.

  • cli (bool): Whether the system has a command line interface
  • gui (bool): Whether the system has a graphic user interface
  • http (bool): Whether the system can used from an HTTP RESTful API
  • library (bool): Whether the system can be linked as a code library
  • programming_languages (list[str]): List of programming languages in which the system can be used, i.e., it is either natively coded in that language or there are maintained bindings (as opposed to using language X's standard way to call code from language Y).

Domains

Characteristics describing the domains in which the system can be applied, which roughly correspond to the types of input data that the system can handle.

  • domains (list[str]): Domains in which the system can be deployed. Valid values are:
    • images
    • nlp
    • tabular
    • time_series
  • multi_domain (bool): Whether the system supports multiple domains for a single workflow, e.g., by allowing multiple inputs of different types simultaneously

Techniques

Characteristics describing the actual models and techniques used in the system, and the underlying ML libraries where those techniques are implemented.

  • techniques (list[str]): List of high-level techniques that are available in the systems, broadly classified according to model families. Valid values are:
    • linear_models
    • trees
    • bayesian
    • kernel_machines
    • graphical_models
    • mlp
    • cnn
    • rnn
    • pretrained
    • ensembles
    • ad_hoc ( 📝 indicates non-ML algorithms, e.g., tokenizers)
  • distillation (bool): Whether the system supports model distillation
  • ml_libraries (list[str]): List of ML libraries that support the system, i.e., where the techniques are actually implemented, if any. Valid values are lists of strings. Some examples are:
    • scikit-learn
    • keras
    • pytorch
    • nltk
    • spacy
    • transformers

Tasks

Characteristics describing the types of tasks, or problems, in which the system can be applied, which roughly correspond to the types of outputs supported.

  • tasks (list[str]): List of high-level tasks the system can perform automatically. Valid values are:
    • classification
    • structured_prediction
    • structured_generation
    • unstructured_generation
    • regression
    • clustering
    • imputation
    • segmentation
    • feature_preprocessing
    • feature_selection
    • data_augmentation
    • dimensionality_reduction
    • data_preprocessing ( 📝 domain-agonostic data preprocessing such as normalization and scaling)
    • domain_preprocessing ( 📝 refers to domain-specific preprocessing, e.g., stemming)
  • multi_task: Whether the system supports multiple tasks in a single workflow, e.g., by allowing multiple output heads from the same neural network

Search strategies

Characteristics describing the optimizaction/search strategies used for model search and/or hyperparameter tunning.

  • search_strategies (list[str]): List of high-level search strategies that are available in the system. Valid values are:
    • random
    • evolutionary
    • gradient_descent
    • hill_climbing
    • bayesian
    • grid
    • hyperband
    • reinforcement_learning
    • constructive
    • monte_carlo
  • meta_learning (list[str]): If the system includes meta-learning, list of broadly classified techniques used. Valid values are:
    • portfolio
    • warm_start

Search space

Characteristics describing the search space, the types of hyperparameters that can be optimized, and the types of ML pipelines that can be represented in this space.

  • search_space: High-level characteristics of the hyperparameter search space.
    • hierarchical (bool): If there are hyperparameters that only make sense conditioned to others.
    • probabilistic (bool): If the hyperparameter space has an associated probabilistic model.
    • differentiable (bool): If the hyperameter space can be used for gradient descent.
    • automatic (bool): If the global structure of the hyperparameter space is inferred automatically from, e.g., type annotations or model's documentation, as opposed to explicitely defined by the developers or the user.
    • hyperparameters (list[str]): Types of hyperparameters that can be optimized. Valid values are:
      • continuous
      • discrete
      • categorical
      • conditional
    • pipelines: Types of pipelines that can be discovered by the AutoML process. Each of the following keys is boolean.
      • single (bool): A single estimator (or model in general)
      • fixed (bool): A fixed pipeline with several, but predefined, steps
      • linear (bool): A variable-length pipeline where each step feeds on the immediately previous output
      • graph (bool): An arbitrarily graph-shaped pipeline where each step can feed on any of the previous outputs
    • robust (bool): Whether the seach space contains potentially invalid pipelines that are only discovered when evaluated, e.g., allowing a dense-only estimator to precede a sparse transformer.

Software architecture

Other characteristics describing general features of the system as a software product.

  • extensible (bool): Whether the system is designed to be extensible, in the sense that a user can add a single new type of model, or search algorithm, etc., in an easy manner, not needing to modify any part of the system/
  • accessible (bool): Whether the models obtained from the AutoML process can be freely inspected by the user up to the level of individual parameters (e.g., neural network weights).
  • portable (bool): Whether the models obtained can be exported out of the AutoML system, either on a standard format, or, at least, in a format native of the underlying ML library,such that they can be deployed on another platform without depending on the AutoML system itself.
  • computational_resources: Computational resources that, if available, can be leveraged by the system.
    • gpu (bool): Whether the system supports GPUs.
    • tpu (bool): Whether the system supports TPUs.
    • cluster (bool): Whether the system supports cluster-based parallelism.

How to contribute

If you are an author or a user of any practical AutoML system that roughly fits the previous criteria, we would love to have your contributions. You can add new systems, add information for existing ones, or fix anything that is incorrect.

To do this, either create a new or modify an existing file in data/systems. Once done, you can run make check to ensure that the modifications are valid with respect to the schema defined in scripts/models.py. If you need to add new fields, or new values to any of the enumerations defined, feel free to modify the corresponding schema as well (and modify both data/systems/_template.yml and this README).

Once validated, you can open a pull request.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Owner
AutoGOAL
Democratizing Machine Learning
AutoGOAL
My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data

kNN-vs-RFR My project contrasts K-Nearest Neighbors and Random Forrest Regressors on Real World data In many areas, rental bikes have been launched to

1 Oct 28, 2021
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022
A Collection of Conference & School Notes in Machine Learning 🦄📝🎉

Machine Learning Conference & Summer School Notes. 🦄📝🎉

558 Dec 28, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Backtesting an algorithmic trading strategy using Machine Learning and Sentiment Analysis.

Trading Tesla with Machine Learning and Sentiment Analysis An interactive program to train a Random Forest Classifier to predict Tesla daily prices us

Renato Votto 31 Nov 17, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022