NAS-Bench-x11 and the Power of Learning Curves

Overview

NAS-Bench-x11

NAS-Bench-x11 and the Power of Learning Curves
Shen Yan, Colin White, Yash Savani, Frank Hutter.
NeurIPS 2021.

Surrogate NAS benchmarks for multi-fidelity algorithms

We present a method to create surrogate neural architecture search (NAS) benchmarks, NAS-Bench-111, NAS-Bench-311, and NAS-Bench-NLP11, that output the full training information for each architecture, rather than just the final validation accuracy. This makes it possible to benchmark multi-fidelity techniques such as successive halving and learning curve extrapolation (LCE). Then we present a framework for converting popular single-fidelity algorithms into LCE-based algorithms.

nas-bench-x11

Installation

Clone this repository and install its requirements.

git clone https://github.com/automl/nas-bench-x11
cd nas-bench-x11
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

Download the pretrained surrogate models and place them into checkpoints/. The current models are v0.5. We will continue to improve the surrogate model by adding the sliding window noise model.

NAS-Bench-311 and NAS-Bench-NLP11 will work as is. To use NAS-Bench-111, first install NAS-Bench-101.

Using the API

The api is located in nas_bench_x11/api.py.

Here is an example of how to use the API:

from nas_bench_x11.api import load_ensemble

# load the surrogate
nb311_surrogate_model = load_ensemble('path/to/nb311-v0.5')

# define a genotype as in the original DARTS repository
from collections import namedtuple
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
arch = Genotype(normal=[('sep_conv_3x3', 0), ('sep_conv_5x5', 1), ('skip_connect', 1), ('max_pool_3x3', 2), ('sep_conv_3x3', 0), ('dil_conv_5x5', 1), ('sep_conv_5x5', 2), ('dil_conv_5x5', 4)], \
                normal_concat=[2, 3, 4, 5, 6], \
                reduce=[('dil_conv_5x5', 0), ('skip_connect', 1), ('avg_pool_3x3', 0), ('sep_conv_5x5', 1), ('avg_pool_3x3', 0), ('max_pool_3x3', 2), ('sep_conv_3x3', 1), ('max_pool_3x3', 3)], \
                reduce_concat=[4, 5, 6])

# query the surrogate to output the learning curve
learning_curve = nb311_surrogate_model.predict(config=arch, representation="genotype", with_noise=True)
print(learning_curve)
# outputs: [34.50166741 44.77032749 50.62796474 ... 93.47724664]

Run NAS experiments from our paper

You will also need to download the nas-bench-301 runtime model lgb_runtime_v1.0 and place it inside a folder called nb_models.

# Supported optimizers: (rs re ls bananas)-{svr, lce}, hb, bohb 

bash naslib/benchmarks/nas/run_nb311.sh 
bash naslib/benchmarks/nas/run_nb201.sh 
bash naslib/benchmarks/nas/run_nb201_cifar100.sh 
bash naslib/benchmarks/nas/run_nb201_imagenet16-200.sh
bash naslib/benchmarks/nas/run_nb111.sh 
bash naslib/benchmarks/nas/run_nbnlp.sh 

Results will be saved in results/.

Citation

@inproceedings{yan2021bench,
  title={NAS-Bench-x11 and the Power of Learning Curves},
  author={Yan, Shen and White, Colin and Savani, Yash and Hutter, Frank},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}
Owner
AutoML-Freiburg-Hannover
AutoML-Freiburg-Hannover
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Will Thompson 166 Jan 04, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022