[ECCV'20] Convolutional Occupancy Networks

Overview

Convolutional Occupancy Networks

Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post

This repository contains the implementation of the paper:

Convolutional Occupancy Networks
Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys and Andreas Geiger
ECCV 2020 (spotlight)

If you find our code or paper useful, please consider citing

@inproceedings{Peng2020ECCV,
 author =  {Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, Andreas Geiger},
 title = {Convolutional Occupancy Networks},
 booktitle = {European Conference on Computer Vision (ECCV)},
 year = {2020}}

Contact Songyou Peng for questions, comments and reporting bugs.

Installation

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called conv_onet using

conda env create -f environment.yaml
conda activate conv_onet

Note: you might need to install torch-scatter mannually following the official instruction:

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.4.0+cu101.html

Next, compile the extension modules. You can do this via

python setup.py build_ext --inplace

Demo

First, run the script to get the demo data:

bash scripts/download_demo_data.sh

Reconstruct Large-Scale Matterport3D Scene

You can now quickly test our code on the real-world scene shown in the teaser. To this end, simply run:

python generate.py configs/pointcloud_crop/demo_matterport.yaml

This script should create a folder out/demo_matterport/generation where the output meshes and input point cloud are stored.

Note: This experiment corresponds to our fully convolutional model, which we train only on the small crops from our synthetic room dataset. This model can be directly applied to large-scale real-world scenes with real units and generate meshes in a sliding-window manner, as shown in the teaser. More details can be found in section 6 of our supplementary material. For training, you can use the script pointcloud_crop/room_grid64.yaml.

Reconstruct Synthetic Indoor Scene

You can also test on our synthetic room dataset by running:

python generate.py configs/pointcloud/demo_syn_room.yaml

Dataset

To evaluate a pretrained model or train a new model from scratch, you have to obtain the respective dataset. In this paper, we consider 4 different datasets:

ShapeNet

You can download the dataset (73.4 GB) by running the script from Occupancy Networks. After, you should have the dataset in data/ShapeNet folder.

Synthetic Indoor Scene Dataset

For scene-level reconstruction, we create a synthetic dataset of 5000 scenes with multiple objects from ShapeNet (chair, sofa, lamp, cabinet, table). There are also ground planes and randomly sampled walls.

You can download our preprocessed data (144 GB) using

bash scripts/download_data.sh

This script should download and unpack the data automatically into the data/synthetic_room_dataset folder.
Note: We also provide point-wise semantic labels in the dataset, which might be useful.

Alternatively, you can also preprocess the dataset yourself. To this end, you can:

  • download the ShapeNet dataset as described above.
  • check scripts/dataset_synthetic_room/build_dataset.py, modify the path and run the code.

Matterport3D

Download Matterport3D dataset from the official website. And then, use scripts/dataset_matterport/build_dataset.py to preprocess one of your favorite scenes. Put the processed data into data/Matterport3D_processed folder.

ScanNet

Download ScanNet v2 data from the official ScanNet website. Then, you can preprocess data with: scripts/dataset_scannet/build_dataset.py and put into data/ScanNet folder.
Note: Currently, the preprocess script normalizes ScanNet data to a unit cube for the comparison shown in the paper, but you can easily adapt the code to produce data with real-world metric. You can then use our fully convolutional model to run evaluation in a sliding-window manner.

Usage

When you have installed all binary dependencies and obtained the preprocessed data, you are ready to run our pre-trained models and train new models from scratch.

Mesh Generation

To generate meshes using a trained model, use

python generate.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file.

Use a pre-trained model
The easiest way is to use a pre-trained model. You can do this by using one of the config files under the pretrained folders.

For example, for 3D reconstruction from noisy point cloud with our 3-plane model on the synthetic room dataset, you can simply run:

python generate.py configs/pointcloud/pretrained/room_3plane.yaml

The script will automatically download the pretrained model and run the generation. You can find the outputs in the out/.../generation_pretrained folders

Note that the config files are only for generation, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pretrained model.

We provide the following pretrained models:

pointcloud/shapenet_1plane.pt
pointcloud/shapenet_3plane.pt
pointcloud/shapenet_grid32.pt
pointcloud/shapenet_3plane_partial.pt
pointcloud/shapenet_pointconv.pt
pointcloud/room_1plane.pt
pointcloud/room_3plane.pt
pointcloud/room_grid32.pt
pointcloud/room_grid64.pt
pointcloud/room_combine.pt
pointcloud/room_pointconv.pt
pointcloud_crop/room_grid64.pt
voxel/voxel_shapenet_1plane.pt
voxel/voxel_shapenet_3plane.pt
voxel/voxel_shapenet_grid32.pt

Evaluation

For evaluation of the models, we provide the script eval_meshes.py. You can run it using:

python eval_meshes.py CONFIG.yaml

The script takes the meshes generated in the previous step and evaluates them using a standardized protocol. The output will be written to .pkl/.csv files in the corresponding generation folder which can be processed using pandas.

Note: We follow previous works to use "use 1/10 times the maximal edge length of the current object’s bounding box as unit 1" (see Section 4 - Metrics). In practice, this means that we multiply the Chamfer-L1 by a factor of 10 for reporting the numbers in the paper.

Training

Finally, to train a new network from scratch, run:

python train.py CONFIG.yaml

For available training options, please take a look at configs/default.yaml.

Further Information

Please also check out the following concurrent works that either tackle similar problems or share similar ideas:

This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
AI that generate music

PianoGPT ai that generate music try it here https://share.streamlit.io/annasajkh/pianogpt/main/main.py or here https://huggingface.co/spaces/Annas/Pia

Annas 28 Nov 27, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
✂️ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022