[NeurIPS'21] Projected GANs Converge Faster

Overview

[Project] [PDF] [Supplementary] [Talk]

This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster"

by Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger.

If you find our code or paper useful, please cite

@InProceedings{Sauer2021NEURIPS,
  author         = {Axel Sauer and Kashyap Chitta and Jens M{\"{u}}ller and Andreas Geiger},
  title          = {Projected GANs Converge Faster},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year           = {2021},
}

ToDos

  • Initial code release
  • Providing pretrained models
  • Easy-to-use colab
  • StyleGAN3 support

Requirements

  • 64-bit Python 3.8 and PyTorch 1.9.0 (or later). See https://pytorch.org for PyTorch install instructions.
  • Use the following commands with Miniconda3 to create and activate your PG Python environment:
    • conda env create -f environment.yml
    • conda activate pg
  • The StyleGAN2 generator relies on custom CUDA kernels, which are compiled on the fly. Hence you need:
    • CUDA toolkit 11.1 or later.
    • GCC 7 or later compilers. Recommended GCC version depends on CUDA version, see for example CUDA 11.4 system requirements.
    • If you run into problems when setting up for the custom CUDA kernels, we refer to the Troubleshooting docs of the original StyleGAN repo. When using the FastGAN generator you will not need the custom kernels.

Data Preparation

For a quick start, you can download the few-shot datasets provided by the authors of FastGAN. You can download them here. To prepare the dataset at the respective resolution, run for example

python dataset_tool.py --source=./data/pokemon --dest=./data/pokemon256.zip \
  --resolution=256x256 --transform=center-crop

You can get the datasets we used in our paper at their respective websites:

CLEVR, FFHQ, Cityscapes, LSUN, AFHQ, Landscape.

Training

Training your own PG on LSUN church using 8 GPUs:

python train.py --outdir=./training-runs/ --cfg=fastgan --data=./data/pokemon256.zip \
  --gpus=8 --batch=64 --mirror=1 --snap=50 --batch-gpu=8 --kimg=10000

--batch specifies the overall batch size, --batch-gpu specifies the batch size per GPU. If you use fewer GPUs, the training loop will automatically accumulate gradients, until the overall batch size is reached.

If you want to use the StyleGAN2 generator, use --cfg=stylegan2. Samples and metrics are saved in outdir. To monitor the training progress, you can inspect fid50k_full.json or run tensorboard in training-runs.

Generating Samples & Interpolations

To generate samples and interpolation videos, run

python gen_images.py --outdir=out --trunc=1.0 --seeds=10-15 \
  --network=PATH_TO_NETWORK_PKL

and

python gen_video.py --output=lerp.mp4 --trunc=1.0 --seeds=0-31 --grid=4x2 \
  --network=PATH_TO_NETWORK_PKL

Quality Metrics

Per default, train.py tracks FID50k during training. To calculate metrics for a specific network snapshot, run

python calc_metrics.py --metrics=fid50k_full --network=PATH_TO_NETWORK_PKL

To see the available metrics, run

python calc_metrics.py --help

Using PG in your own project

Our implementation is modular, so it is straightforward to use PG in your own codebase. Simply copy the pg_modules folder to your project. Then, to get the projected multi-scale discriminator, run

from pg_modules.discriminator import ProjectedDiscriminator
D = ProjectedDiscriminator()

The only thing you still need to do is to make sure that the feature network is not trained, i.e., explicitly set

D.feature_network.requires_grad_(False)

in your training loop.

Acknowledgments

Our codebase build and extends the awesome StyleGAN2-ADA repo and StyleGAN3 repo, both by Karras et al.

Furthermore, we use parts of the code of FastGAN and MiDas.

PyTorch Implementation of Spatially Consistent Representation Learning(SCRL)

Spatially Consistent Representation Learning (CVPR'21) Official PyTorch implementation of Spatially Consistent Representation Learning (SCRL). This re

Kakao Brain 102 Nov 03, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
Torchreid: Deep learning person re-identification in PyTorch.

Torchreid Torchreid is a library for deep-learning person re-identification, written in PyTorch. It features: multi-GPU training support both image- a

Kaiyang 3.7k Jan 05, 2023
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
nanodet_plus,yolov5_v6.0

OAK_Detection OAK设备上适配nanodet_plus,yolov5_v6.0 Environment pytorch = 1.7.0

炼丹去了 1 Feb 18, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)

GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C

Wu Huikai 402 Dec 27, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022