[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

Overview

TransFuser

This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our code or paper useful, please cite

@inproceedings{Prakash2021CVPR,
  author = {Prakash, Aditya and Chitta, Kashyap and Geiger, Andreas},
  title = {Multi-Modal Fusion Transformer for End-to-End Autonomous Driving},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2021}
}

Setup

Install anaconda

wget https://repo.anaconda.com/archive/Anaconda3-2020.11-Linux-x86_64.sh
bash Anaconda3-2020.11-Linux-x86_64.sh
source ~/.profile

Clone the repo and build the environment

git clone https://github.com/autonomousvision/transfuser
cd transfuser
conda create -n transfuser python=3.7
pip3 install -r requirements.txt
conda activate transfuser

Download and setup CARLA 0.9.10.1

chmod +x setup_carla.sh
./setup_carla.sh

Data Generation

The training data is generated using leaderboard/team_code/auto_pilot.py in 8 CARLA towns and 14 weather conditions. The routes and scenarios files to be used for data generation are provided at leaderboard/data.

Running CARLA Server

With Display

./CarlaUE4.sh -world-port=<port> -opengl

Without Display

Without Docker:

SDL_VIDEODRIVER=offscreen SDL_HINT_CUDA_DEVICE=<gpu_id> ./CarlaUE4.sh -world-port=<port> -opengl

With Docker:

Instructions for setting up docker are available here. Pull the docker image of CARLA 0.9.10.1 docker pull carlasim/carla:0.9.10.1.

Docker 18:

docker run -it --rm -p 2000-2002:2000-2002 --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=<gpu_id> carlasim/carla:0.9.10.1 ./CarlaUE4.sh -world-port=2000 -opengl

Docker 19:

docker run -it --rm --net=host --gpus '"device=<gpu_id>"' carlasim/carla:0.9.10.1 ./CarlaUE4.sh -world-port=2000 -opengl

If the docker container doesn't start properly then add another environment variable -e SDL_AUDIODRIVER=dsp.

Run the Autopilot

Once the CARLA server is running, rollout the autopilot to start data generation.

./leaderboard/scripts/run_evaluation.sh

The expert agent used for data generation is defined in leaderboard/team_code/auto_pilot.py. Different variables which need to be set are specified in leaderboard/scripts/run_evaluation.sh. The expert agent is based on the autopilot from this codebase.

Routes and Scenarios

Each route is defined by a sequence of waypoints (and optionally a weather condition) that the agent needs to follow. Each scenario is defined by a trigger transform (location and orientation) and other actors present in that scenario (optional). The leaderboard repository provides a set of routes and scenarios files. To generate additional routes, spin up a CARLA server and follow the procedure below.

Generating routes with intersections

The position of traffic lights is used to localize intersections and (start_wp, end_wp) pairs are sampled in a grid centered at these points.

python3 tools/generate_intersection_routes.py --save_file <path_of_generated_routes_file> --town <town_to_be_used>

Sampling individual junctions from a route

Each route in the provided routes file is interpolated into a dense sequence of waypoints and individual junctions are sampled from these based on change in navigational commands.

python3 tools/sample_junctions.py --routes_file <xml_file_containing_routes> --save_file <path_of_generated_file>

Generating Scenarios

Additional scenarios are densely sampled in a grid centered at the locations from the reference scenarios file. More scenario files can be found here.

python3 tools/generate_scenarios.py --scenarios_file <scenarios_file_to_be_used_as_reference> --save_file <path_of_generated_json_file> --towns <town_to_be_used>

Training

The training code and pretrained models are provided below.

mkdir model_ckpt
wget https://s3.eu-central-1.amazonaws.com/avg-projects/transfuser/models.zip -P model_ckpt
unzip model_ckpt/models.zip -d model_ckpt/
rm model_ckpt/models.zip

Evaluation

Spin up a CARLA server (described above) and run the required agent. The adequate routes and scenarios files are provided in leaderboard/data and the required variables need to be set in leaderboard/scripts/run_evaluation.sh.

CUDA_VISIBLE_DEVICES=<gpu_id> ./leaderboard/scripts/run_evaluation.sh

Acknowledgements

This implementation is based on codebase from several repositories.

Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
A Python package to create, run, and post-process MODFLOW-based models.

Version 3.3.5 — release candidate Introduction FloPy includes support for MODFLOW 6, MODFLOW-2005, MODFLOW-NWT, MODFLOW-USG, and MODFLOW-2000. Other s

388 Nov 29, 2022
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022